期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
协同过滤推荐瓶颈问题综述 被引量:10
1
作者 曹一鸣 《软件》 2012年第12期315-321,共7页
个性化推荐使得用户从浩瀚信息检索查找中解放出来,成为一种继搜索引擎之后获取信息的重要方式。协同过滤因为其算法简单,能够处理复杂对象,并且推荐效果优异,成为个性化推荐中最成功和应用最广泛的技术。但随着推荐系统规模扩大,协同... 个性化推荐使得用户从浩瀚信息检索查找中解放出来,成为一种继搜索引擎之后获取信息的重要方式。协同过滤因为其算法简单,能够处理复杂对象,并且推荐效果优异,成为个性化推荐中最成功和应用最广泛的技术。但随着推荐系统规模扩大,协同过滤受到了数据稀疏性、冷启动和可扩展性等瓶颈问题严重挑战。本文总结了传统协同过滤推荐技术流程,重点研究了解决协同过滤瓶颈问题的方案,分析了它们各自的优缺点,便于后续实现协同过滤推荐系统时方案的选择和使用。 展开更多
关键词 个性化推荐 协同过滤 数据稀疏性问题 冷启动问题 可扩展性问题
下载PDF
Alleviating the Cold Start Problem in Recommender Systems Based on Modularity Maximization Community Detection Algorithm 被引量:4
2
作者 S. Vairachilai M. K. Kavithadevi M. Raja 《Circuits and Systems》 2016年第8期1268-1279,共12页
Recommender system (RS) has become a very important factor in many eCommerce sites. In our daily life, we rely on the recommendation from other persons either by word of mouth, recommendation letters, movie, item and ... Recommender system (RS) has become a very important factor in many eCommerce sites. In our daily life, we rely on the recommendation from other persons either by word of mouth, recommendation letters, movie, item and book reviews printed in newspapers, etc. The typical Recommender Systems are software tools and techniques that provide support to people by identifying interesting products and services in online store. It also provides a recommendation for certain users who search for the recommendations. The most important open challenge in Collaborative filtering recommender system is the cold start problem. If the adequate or sufficient information is not available for a new item or users, the recommender system runs into the cold start problem. To increase the usefulness of collaborative recommender systems, it could be desirable to eliminate the challenge such as cold start problem. Revealing the community structures is crucial to understand and more important with the increasing popularity of online social networks. The community detection is a key issue in social network analysis in which nodes of the communities are tightly connected each other and loosely connected between other communities. Many algorithms like Givan-Newman algorithm, modularity maximization, leading eigenvector, walk trap, etc., are used to detect the communities in the networks. To test the community division is meaningful we define a quality function called modularity. Modularity is that the links within a community are higher than the expected links in those communities. In this paper, we try to give a solution to the cold-start problem based on community detection algorithm that extracts the community from the social networks and identifies the similar users on that network. Hence, within the proposed work several intrinsic details are taken as a rule of thumb to boost the results higher. Moreover, the simulation experiment was taken to solve the cold start problem. 展开更多
关键词 Collaborative Recommender Systems cold start problem Community Detection Pearson Correlation Coefficient
下载PDF
基于社交关系与无监督学习的大数据推荐算法 被引量:2
3
作者 李淑霞 杨俊成 蔡增玉 《计算机应用与软件》 北大核心 2019年第5期304-310,321,共8页
针对大数据推荐系统中推荐准确率与效率较低的问题,设计一种基于社交关系与多上下文因素的大数据推荐系统。基于活动用户的社交网络,构建一个社交关系的张量模型;通过张量分解获得用户的上下文因素;基于候选集的相似性产生一个推荐列表... 针对大数据推荐系统中推荐准确率与效率较低的问题,设计一种基于社交关系与多上下文因素的大数据推荐系统。基于活动用户的社交网络,构建一个社交关系的张量模型;通过张量分解获得用户的上下文因素;基于候选集的相似性产生一个推荐列表。基于用户的反馈预测社交关系的范围,有效地减少推荐系统的计算量。真实数据集的实验结果证明,该算法提高了推荐系统的推荐精度,有效地缓解了稀疏性问题与冷启动问题,并且实现了较快的响应时间。 展开更多
关键词 社交网络 大数据 推荐系统 稀疏性问题 冷启动问题 灰羊问题
下载PDF
Applying memetic algorithm-based clustering to recommender system with high sparsity problem 被引量:2
4
作者 MARUNG Ukrit THEERA-UMPON Nipon AUEPHANWIRIYAKUL Sansanee 《Journal of Central South University》 SCIE EI CAS 2014年第9期3541-3550,共10页
A new recommendation method was presented based on memetic algorithm-based clustering. The proposed method was tested on four highly sparse real-world datasets. Its recommendation performance is evaluated and compared... A new recommendation method was presented based on memetic algorithm-based clustering. The proposed method was tested on four highly sparse real-world datasets. Its recommendation performance is evaluated and compared with that of the frequency-based, user-based, item-based, k-means clustering-based, and genetic algorithm-based methods in terms of precision, recall, and F1 score. The results show that the proposed method yields better performance under the new user cold-start problem when each of new active users selects only one or two items into the basket. The average F1 scores on all four datasets are improved by 225.0%, 61.6%, 54.6%, 49.3%, 28.8%, and 6.3% over the frequency-based, user-based, item-based, k-means clustering-based, and two genetic algorithm-based methods, respectively. 展开更多
关键词 memetic algorithm recommender system sparsity problem cold-start problem clustering method
下载PDF
基于二部分图网络结构推荐的改进算法 被引量:1
5
作者 邓松 邱静 陈军华 《上海师范大学学报(自然科学版)》 2017年第4期535-541,共7页
介绍了一种基于网络结构推荐的改进算法.在标准物质扩散算法的基础上,考虑到用户的评分对推荐商品的影响,对推荐算法中初始资源分配矢量和资源转移矩阵进行了改进,增加了调节因子.使用来源于Group Lens网站上的训练集数来评价这个推荐... 介绍了一种基于网络结构推荐的改进算法.在标准物质扩散算法的基础上,考虑到用户的评分对推荐商品的影响,对推荐算法中初始资源分配矢量和资源转移矩阵进行了改进,增加了调节因子.使用来源于Group Lens网站上的训练集数来评价这个推荐算法的性能,从而进行了一系列的实验.实验结果表明,该算法比传统的协同过滤系统、基于网络结构的推荐系统和带有权重的基于网络结构的推荐系统具有更好的推荐精度和更高的命中率,解决了标准物质扩散算法当中的冷启动问题和可扩展性问题,使得推荐结果具有多样性. 展开更多
关键词 推荐算法 物质扩散算法 冷启动问题 可扩展性问题 推荐多样性
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部