The singular second-order m-point boundary value problem , is considered under some conditions concerning the first eigenvalue of the relevant linear operators, where (Lϕ)(x) = (p(x)ϕ′...The singular second-order m-point boundary value problem , is considered under some conditions concerning the first eigenvalue of the relevant linear operators, where (Lϕ)(x) = (p(x)ϕ′(x))′ + q(x)ϕ(x) and ξ<SUB> i </SUB>∈ (0, 1) with 0 【 ξ<SUB>1</SUB> 【 ξ<SUB>2</SUB> 【 · · · 【 ξ<SUB> m−2</SUB> 【 1, a <SUB>i </SUB>∈ [0, ∞). h(x) is allowed to be singular at x = 0 and x = 1. The existence of positive solutions is obtained by means of fixed point index theory. Similar conclusions hold for some other m-point boundary value conditions.展开更多
This paper deals with the singular nonlinear third-order periodic boundary value problem u'' + p(3)u = f (t, u), 0 less than or equal to t less than or equal to 2pi, with u((i)) (0) = u((i)) (2pi), i = 0, 1, 2...This paper deals with the singular nonlinear third-order periodic boundary value problem u'' + p(3)u = f (t, u), 0 less than or equal to t less than or equal to 2pi, with u((i)) (0) = u((i)) (2pi), i = 0, 1, 2, where p is an element of (Graphics) and f is singular at t = 0, t = 1 and u = 0. Under suitable weaker conditions than those of [1], it is proved by constructing a special cone in C[0, 2pi] and employing the fixed point index theory that the problem has at least one or at least two positive solutions.展开更多
文摘The singular second-order m-point boundary value problem , is considered under some conditions concerning the first eigenvalue of the relevant linear operators, where (Lϕ)(x) = (p(x)ϕ′(x))′ + q(x)ϕ(x) and ξ<SUB> i </SUB>∈ (0, 1) with 0 【 ξ<SUB>1</SUB> 【 ξ<SUB>2</SUB> 【 · · · 【 ξ<SUB> m−2</SUB> 【 1, a <SUB>i </SUB>∈ [0, ∞). h(x) is allowed to be singular at x = 0 and x = 1. The existence of positive solutions is obtained by means of fixed point index theory. Similar conclusions hold for some other m-point boundary value conditions.
文摘This paper deals with the singular nonlinear third-order periodic boundary value problem u'' + p(3)u = f (t, u), 0 less than or equal to t less than or equal to 2pi, with u((i)) (0) = u((i)) (2pi), i = 0, 1, 2, where p is an element of (Graphics) and f is singular at t = 0, t = 1 and u = 0. Under suitable weaker conditions than those of [1], it is proved by constructing a special cone in C[0, 2pi] and employing the fixed point index theory that the problem has at least one or at least two positive solutions.