Image Super-Resolution(SR)research has achieved great success with powerful neural networks.The deeper networks with more parameters improve the restoration quality but add the computation complexity,which means more ...Image Super-Resolution(SR)research has achieved great success with powerful neural networks.The deeper networks with more parameters improve the restoration quality but add the computation complexity,which means more inference time would be cost,hindering image SR from practical usage.Noting the spatial distribution of the objects or things in images,a twostage local objects SR system is proposed,which consists of two modules,the object detection module and the SR module.Firstly,You Only Look Once(YOLO),which is efficient in generic object detection tasks,is selected to detect the input images for obtaining objects of interest,then put them into the SR module and output corresponding High-Resolution(HR)subimages.The computational power consumption of image SR is optimized by reducing the resolution of input images.In addition,we establish a dataset,TrafficSign500,for our experiment.Finally,the performance of the proposed system is evaluated under several State-Of-The-Art(SOTA)YOLOv5 and SISR models.Results show that our system can achieve a tremendous computation improvement in image SR.展开更多
提出了一种基于感兴趣区域ROI(Regions of Interest)的红外舰船目标定位方法,通过改进的Itti模型提取包含目标的感兴趣区域,实现目标定位。首先应用小波变换代替Itti模型的高斯滤波生成图像多尺度金字塔,并用center-surround算子提取多...提出了一种基于感兴趣区域ROI(Regions of Interest)的红外舰船目标定位方法,通过改进的Itti模型提取包含目标的感兴趣区域,实现目标定位。首先应用小波变换代替Itti模型的高斯滤波生成图像多尺度金字塔,并用center-surround算子提取多尺度的视觉差异,再将生成的视觉特征图进行归一化并线性组合,生成显著图,最后运用交替式有效子窗口搜索算法A-ESS(Alternating Efficient Subwindow Search)定位目标区域。实验结果表明:该方法能准确定位出目标区域。展开更多
基金supported by the National Natural Science Foundation of China(NSFC)under Grant No.62001057by Beijing University of Posts and Telecommunications Basic Research Fund,2021RC26by the National Natural Science Foundation of China(NSFC)under Grant Nos.61871048 and 61872253.
文摘Image Super-Resolution(SR)research has achieved great success with powerful neural networks.The deeper networks with more parameters improve the restoration quality but add the computation complexity,which means more inference time would be cost,hindering image SR from practical usage.Noting the spatial distribution of the objects or things in images,a twostage local objects SR system is proposed,which consists of two modules,the object detection module and the SR module.Firstly,You Only Look Once(YOLO),which is efficient in generic object detection tasks,is selected to detect the input images for obtaining objects of interest,then put them into the SR module and output corresponding High-Resolution(HR)subimages.The computational power consumption of image SR is optimized by reducing the resolution of input images.In addition,we establish a dataset,TrafficSign500,for our experiment.Finally,the performance of the proposed system is evaluated under several State-Of-The-Art(SOTA)YOLOv5 and SISR models.Results show that our system can achieve a tremendous computation improvement in image SR.