期刊文献+
共找到113篇文章
< 1 2 6 >
每页显示 20 50 100
新的K-均值算法最佳聚类数确定方法 被引量:91
1
作者 周世兵 徐振源 唐旭清 《计算机工程与应用》 CSCD 北大核心 2010年第16期27-31,共5页
K-均值聚类算法是以确定的类数k和随机选定的初始聚类中心为前提对数据集进行聚类的。通常聚类数k事先无法确定,随机选定的初始聚类中心容易使聚类结果不稳定。提出了一种新的确定K-均值聚类算法的最佳聚类数方法,通过设定AP算法的参数,... K-均值聚类算法是以确定的类数k和随机选定的初始聚类中心为前提对数据集进行聚类的。通常聚类数k事先无法确定,随机选定的初始聚类中心容易使聚类结果不稳定。提出了一种新的确定K-均值聚类算法的最佳聚类数方法,通过设定AP算法的参数,将AP算法产生的聚类数作为聚类数搜索范围的上界kmax,并通过选择合适的有效性指标Silhouette指标,以及基于最大最小距离算法思想设定初始聚类中心,分析聚类效果,确定最佳聚类数。仿真实验和分析验证了以上算法方案的可行性。 展开更多
关键词 K-均值聚类 聚类数 聚类有效性指标 初始聚类中心
下载PDF
基于近邻传播算法的最佳聚类数确定方法比较研究 被引量:30
2
作者 周世兵 徐振源 唐旭清 《计算机科学》 CSCD 北大核心 2011年第2期225-228,共4页
在聚类分析中,决定聚类质量的关键是确定最佳聚类数。提出采用聚类效果较好的近邻传播聚类算法对样本进行聚类,运用6种聚类有效性指标分别对聚类结果进行有效性分析,以确定最佳聚类数。具体分析了这些有效性指标,并改进了IGP指标确定最... 在聚类分析中,决定聚类质量的关键是确定最佳聚类数。提出采用聚类效果较好的近邻传播聚类算法对样本进行聚类,运用6种聚类有效性指标分别对聚类结果进行有效性分析,以确定最佳聚类数。具体分析了这些有效性指标,并改进了IGP指标确定最佳聚类数的方法。针对8个数据集,通过实验比较这些指标的性能。分析和实验结果表明,基于近邻传播聚类算法,IGP指标确定最佳聚类数的性能最好。 展开更多
关键词 近邻传播 聚类数 聚类有效性指标 聚类分析
下载PDF
简单有效的确定聚类数目算法 被引量:23
3
作者 张忠平 王爱杰 柴旭光 《计算机工程与应用》 CSCD 北大核心 2009年第15期166-168,共3页
很多聚类算法要求用户在聚类之前给出聚类数目,这给用户带来了很大的困难。利用二分思想递归分裂簇内相似度大于给定阈值的簇,最后合并簇间相似度小于给定阈值的簇,来获得最终聚类数目。实验表明提出的算法确定的聚类数目和实际聚类数... 很多聚类算法要求用户在聚类之前给出聚类数目,这给用户带来了很大的困难。利用二分思想递归分裂簇内相似度大于给定阈值的簇,最后合并簇间相似度小于给定阈值的簇,来获得最终聚类数目。实验表明提出的算法确定的聚类数目和实际聚类数目相同,并且簇内数据的相似性高,簇间数据的相似性低,该算法简单高效。 展开更多
关键词 簇内相似度 簇间相似度 分裂 合并 聚类数目
下载PDF
一种基于近邻传播算法的最佳聚类数确定方法 被引量:23
4
作者 周世兵 徐振源 唐旭清 《控制与决策》 EI CSCD 北大核心 2011年第8期1147-1152,1157,共7页
在聚类分析中,决定聚类质量的关键是确定最佳聚类数.对此,从样本几何结构的角度定义了样本聚类距离和样本聚类离差距离,设计了一种新的聚类有效性指标.在此基础上,提出一种基于近邻传播算法确定样本最佳聚类数的方法.理论研究和实验结... 在聚类分析中,决定聚类质量的关键是确定最佳聚类数.对此,从样本几何结构的角度定义了样本聚类距离和样本聚类离差距离,设计了一种新的聚类有效性指标.在此基础上,提出一种基于近邻传播算法确定样本最佳聚类数的方法.理论研究和实验结果表明,所提出的指标和方法能够有效地对聚类结果进行评估,适合于确定样本的最佳聚类数. 展开更多
关键词 近邻传播 聚类数 聚类有效性指标 聚类分析
原文传递
K-means算法最佳聚类数评价指标研究 被引量:22
5
作者 郭靖 侯苏 《软件导刊》 2017年第11期5-8,共4页
聚类分析广泛应用于商务智能、图像模式识别、Web搜索、生物学等领域,是一种无指导的观察式学习。然而,绝大多数聚类分析算法都面临着一个非常棘手的问题——最佳聚类数的确定。K-means是典型的基于划分的聚类方法,它需要用户输入聚类... 聚类分析广泛应用于商务智能、图像模式识别、Web搜索、生物学等领域,是一种无指导的观察式学习。然而,绝大多数聚类分析算法都面临着一个非常棘手的问题——最佳聚类数的确定。K-means是典型的基于划分的聚类方法,它需要用户输入聚类数K,但这通常非常困难。聚类数的确定是决定聚类质量的关键因素。虽然有许多被用来估计最优聚类数的聚类评价指标,但对于不同的聚类算法,不同的评价指标效果差异很大。为确定针对K-means聚类算法效果最好的评价指标,采用4种典型的不同聚类结构特征的人工模拟数据以及来自UCI的真实数据集对7种评价指标的性能进行实验比较,结果表明CH指标和I指标在评估K-means算法的最佳聚类数时效果较好。 展开更多
关键词 聚类指标 K-MEANS算法 聚类分析 聚类数
下载PDF
基于分层聚类算法的地区风电出力典型场景选取方法 被引量:20
6
作者 林俐 费宏运 +1 位作者 刘汝琛 潘险险 《电力系统保护与控制》 EI CSCD 北大核心 2018年第7期1-6,共6页
为反映风电场出力变化特征,提出了一种基于分层聚类算法的地区风电出力典型场景选取方法。首先采用分层聚类算法对风电出力样本进行聚类分析,得到反映样本亲疏关系的聚类树状图。随后考虑风电出力典型场景的选取质量,采用类间样本离差... 为反映风电场出力变化特征,提出了一种基于分层聚类算法的地区风电出力典型场景选取方法。首先采用分层聚类算法对风电出力样本进行聚类分析,得到反映样本亲疏关系的聚类树状图。随后考虑风电出力典型场景的选取质量,采用类间样本离差平方和来描述类间样本的差异性,以此作为聚类数的判定依据,从而实现样本的有效划分。最后,以某地区实际风电出力数据为例,验证了所提方法的合理性,并面向调峰、无功配置等需求选取了风电出力典型日场景。 展开更多
关键词 分层聚类算法 典型场景 聚类树状图 风电出力样本 聚类数
下载PDF
基于改进K-means算法的RFAT客户细分研究 被引量:17
7
作者 刘芝怡 陈功 《南京理工大学学报》 EI CAS CSCD 北大核心 2014年第4期531-536,共6页
为了解决传统K-means算法对初始聚类中心敏感和聚类数目事先难以确定的问题,提出了一种改进的K-means算法。改进算法利用最大距离等分策略来选取初始聚类中心,并利用一种评价函数来自动确定聚类数,减少了算法结果对参数的依赖。将改进... 为了解决传统K-means算法对初始聚类中心敏感和聚类数目事先难以确定的问题,提出了一种改进的K-means算法。改进算法利用最大距离等分策略来选取初始聚类中心,并利用一种评价函数来自动确定聚类数,减少了算法结果对参数的依赖。将改进算法应用到某企业客户分类中时,为提高分类结果的表征性,提出了以客户最近购买时间(Recency)、购买频次(Frequency)、平均购买额(Average Monetary)和购买倾向(Trend)作为客户价值细分变量的RFAT(Recency,frequency,average monetary and trend)模型,对客户RFAT值进行了聚类分析,并提供了针对不同客户群的营销策略。实证研究表明,该文所提出的改进算法和模型可以有效地对企业客户进行分类,能充分反映客户的当前价值和增值潜能。 展开更多
关键词 客户分类 购买时间 购买频次 平均购买额 购买倾向 K-MEANS算法 初始聚类中心 聚类数
下载PDF
一种新聚类评价指标 被引量:13
8
作者 谢娟英 周颖 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第6期1-8,共8页
用于发现数据集类簇数k的常用内部评价指标DB(Davies Bouldin)和BWP(Between-within Proportion)等需要先确定一个搜索范围kmax,使数据集的类簇数满足k≤kmax,但如何确定kmax尚无理论指导。针对这一问题,提出一个新F统计量Fr,将Fr作为... 用于发现数据集类簇数k的常用内部评价指标DB(Davies Bouldin)和BWP(Between-within Proportion)等需要先确定一个搜索范围kmax,使数据集的类簇数满足k≤kmax,但如何确定kmax尚无理论指导。针对这一问题,提出一个新F统计量Fr,将Fr作为新聚类有效性准则,以判断聚类算法收敛与否,自适应地确定数据集类簇数;将Fr应用于快速K-medoids算法的收敛性判断,并以基于最小生成树的测地距离,即样本对在最小生成树上的路径长度,代替其间的直接欧氏距离度量样本相似性,得到一种自适应的快速K-medoids聚类算法,解决了K-medoids算法需要人为给定类簇数和不能发现任意形状簇的问题。UCI机器学习数据库数据集和人工模拟数据集实验测试表明,本文提出的Fr指标是一种有效的聚类算法评价指标,基于该指标和测地距离的K-medoids算法不仅能发现任意形状的簇,还可以自适应地确定数据集的类簇数,且对噪音数据有很好的鲁棒性。 展开更多
关键词 F统计量 内部评价指标 类簇数 K-medoids聚类算法 最小生成树
下载PDF
基于均值漂移算法的文本聚类数目优化研究 被引量:11
9
作者 赵华茗 余丽 周强 《数据分析与知识发现》 CSSCI CSCD 北大核心 2019年第9期27-35,共9页
【目的】探索最佳文本聚类数目的优化方法,为提升文本聚类算法的有效性和质量提供参考。【方法】结合TF-IDF和Word2Vec算法,提取TopN关键词向量作为语料库文本特征表达;结合均值漂移算法、聚类有效性指标(Silhouette)和均方误差(MSE)指... 【目的】探索最佳文本聚类数目的优化方法,为提升文本聚类算法的有效性和质量提供参考。【方法】结合TF-IDF和Word2Vec算法,提取TopN关键词向量作为语料库文本特征表达;结合均值漂移算法、聚类有效性指标(Silhouette)和均方误差(MSE)指标,确定最佳文本聚类数目。【结果】Top 4 500关键词向量规模能较好呈现文本特征;基于均值漂移算法确定的最佳文本聚类数与人工研判优化的聚类数相符。【局限】选取的实验数据集合不够充足,缺少在其他领域的应用对比。【结论】本文方法可以在无监督方式下高质量完成文本聚类个数的确定。 展开更多
关键词 均值漂移 文本聚类 聚类数 聚类有效性
原文传递
一种改进的K-means聚类服装图像分割算法 被引量:10
10
作者 高樱萍 宋丹 +1 位作者 王雅静 张轩宇 《湖南工程学院学报(自然科学版)》 2021年第2期54-59,共6页
图像分割是图像处理中的重要环节,如何提高图像分割的准确度一直以来都是图像领域的研究重点及难点.K-means聚类算法作为经典聚类算法得到广泛应用,但是,k值的选取往往难以确定.针对这一问题,提出了一种改进的K-means算法.首先将输入的... 图像分割是图像处理中的重要环节,如何提高图像分割的准确度一直以来都是图像领域的研究重点及难点.K-means聚类算法作为经典聚类算法得到广泛应用,但是,k值的选取往往难以确定.针对这一问题,提出了一种改进的K-means算法.首先将输入的彩色图像转化为灰度图像,统计灰度直方图的峰值数,将其设定为聚类数k,然后对原图像的每个像素点进行聚类,实现分割.实验结果表明,与传统的K-means算法相比,该算法能够确定最佳的聚类数,并且分割效果好. 展开更多
关键词 图像分割 K-MEANS算法 聚类数目 马氏距离
下载PDF
基于全局中心的高密度不唯一的K-means算法研究 被引量:10
11
作者 何云斌 刘雪娇 +2 位作者 王知强 万静 李松 《计算机工程与应用》 CSCD 北大核心 2016年第1期48-54,共7页
传统的K-means算法敏感于初始中心点的选取,并且无法事先确定准确的聚类数目k,不利于聚类结果的稳定性。针对传统K-means算法的以上不足,提出了基于全局中心的高密度不唯一的新方法——NDK-means,该方法通过标准差确定有效密度半径,并... 传统的K-means算法敏感于初始中心点的选取,并且无法事先确定准确的聚类数目k,不利于聚类结果的稳定性。针对传统K-means算法的以上不足,提出了基于全局中心的高密度不唯一的新方法——NDK-means,该方法通过标准差确定有效密度半径,并从高密度区域中选取具有代表性的样本点作为初始聚类中心。此外算法针对最高密度点不唯一的情况进行特别分析,选取距离全局中心最远的点集作为最优的初始中心点集合。在NDK-means算法基础上结合有效性指标BWP对聚类结果进行分析,从而解决了最佳有效聚类数目无法事先确定的不足。理论研究与实验结果表明所提方法的聚类结果具有更好的稳定性和可行性。 展开更多
关键词 K-MEANS算法 初始中心 聚类数 基于密度
下载PDF
新模糊聚类有效性指标 被引量:9
12
作者 耿嘉艺 钱雪忠 周世兵 《计算机应用研究》 CSCD 北大核心 2019年第4期1001-1005,共5页
模糊聚类是模式识别、机器学习和图像处理等领域的重要研究内容。模糊C-均值聚类算法是最常用的模糊聚类实现算法。该算法需要预先给定聚类数才能对数据集进行聚类。提出了一种新的聚类有效性指标,对聚类结果进行有效性验证。该指标从... 模糊聚类是模式识别、机器学习和图像处理等领域的重要研究内容。模糊C-均值聚类算法是最常用的模糊聚类实现算法。该算法需要预先给定聚类数才能对数据集进行聚类。提出了一种新的聚类有效性指标,对聚类结果进行有效性验证。该指标从划分熵、隶属度、几何结构角度,定义了紧凑度、分离度、重叠度三个重要特征测量。在此基础上,提出了一种最佳聚类数确定方法。将新聚类有效性指标与传统有效性指标在六个人工数据集和三个真实数据集进行实验验证。实验结果表明,所提出的指标和方法能够有效地对聚类结果进行评估,适合确定样本的最佳聚类数。 展开更多
关键词 模糊C-均值聚类 聚类数 聚类有效性指标 模糊聚类
下载PDF
基于量子谐振子模型的聚类中心选取算法 被引量:9
13
作者 燕京京 王鹏 +1 位作者 范家兵 黄焱 《电子学报》 EI CAS CSCD 北大核心 2016年第2期405-412,共8页
提出了一种基于量子谐振子模型的聚类中心选取算法.该算法以量子谐振子波函数从高能态到基态过程中的概率变化过程为理论模型来描述聚类问题中数据对象向聚类中心点的聚集行为,能够快速查找到最优的聚类个数及较好的聚类中心点所在的网... 提出了一种基于量子谐振子模型的聚类中心选取算法.该算法以量子谐振子波函数从高能态到基态过程中的概率变化过程为理论模型来描述聚类问题中数据对象向聚类中心点的聚集行为,能够快速查找到最优的聚类个数及较好的聚类中心点所在的网格;数据读入网格结构之后,算法的处理时间与数据集规模无关.实验结果表明:CCSA-QHOM算法较适合于处理每个子类局部区域的网格密度分布呈单峰特性的数据集的聚类中心选择问题. 展开更多
关键词 聚类中心 量子谐振子 聚类个数 网格 单峰特性
下载PDF
一种启发式确定聚类数方法 被引量:7
14
作者 卢建云 朱庆生 吴全旺 《小型微型计算机系统》 CSCD 北大核心 2018年第7期1381-1385,共5页
聚类分析是数据挖掘领域中最重要的任务之一,目前许多聚类算法已经被成功应用到图像聚类、文本聚类、信息检索、社交网络等领域.但面对结构复杂,分布不均衡的数据集时,确定数据集的最佳聚类数目显得尤为困难.因此,本文针对结构复杂、分... 聚类分析是数据挖掘领域中最重要的任务之一,目前许多聚类算法已经被成功应用到图像聚类、文本聚类、信息检索、社交网络等领域.但面对结构复杂,分布不均衡的数据集时,确定数据集的最佳聚类数目显得尤为困难.因此,本文针对结构复杂、分布不均衡的数据集提出了一种启发式最佳聚类数确定的方法.首先,构建随机游走模型对数据集中的点进行重要性排序,通过k-最近邻距离图谱确定重要数据点的个数,由此排除噪声点和不重要的点对类之间以及类内密度变化的影响.其次,通过设计的启发式规则(k-最近邻链间距和k-最近邻链最近邻间距)构建决策图确定最佳聚类数目并识别出聚类代表点.最后,通过最近距离传播算法进行聚类.实验表明该方法可以快速准确地找到最佳聚类个数,同时,本文提出的聚类算法与流行的聚类算法相比取得了比较好的聚类结果. 展开更多
关键词 聚类分析 聚类数目 启发式规则 随机游走模型 k-最近邻链
下载PDF
基于多元数据的谱聚类算法改进与聚类个数确定 被引量:7
15
作者 王丙参 魏艳华 张贝贝 《统计与决策》 CSSCI 北大核心 2022年第12期5-11,共7页
文章基于谱聚类算法,首先利用拉普拉斯矩阵的特征值构造聚类个数变点图,给出了确定聚类个数的直观方法,然后对优化目标引入聚类个数惩罚项,定量探讨聚类个数的选择,最后针对多元数据,通过修订距离矩阵处理成对约束信息,并基于距离矩阵... 文章基于谱聚类算法,首先利用拉普拉斯矩阵的特征值构造聚类个数变点图,给出了确定聚类个数的直观方法,然后对优化目标引入聚类个数惩罚项,定量探讨聚类个数的选择,最后针对多元数据,通过修订距离矩阵处理成对约束信息,并基于距离矩阵构造了三种自适应相似度矩阵,再进行谱聚类。数值模拟结果显示:对于确定聚类个数,聚类个数变点图直观、有效,而惩罚法依赖惩罚项的权重参数,具有一定主观性;三种自适应谱聚类算法均有效,对成对约束信息处理方便、适应面广,稳定自适应谱聚类对近邻个数的选取更稳健。 展开更多
关键词 谱聚类 聚类个数 成对约束 自适应
下载PDF
基于Ward’s方法的k-平均优化算法及其应用 被引量:7
16
作者 邱苏林 王丽珍 《计算机工程与应用》 CSCD 北大核心 2008年第31期169-172,共4页
通过对k-平均算法存在不足的分析,提出了一种基于Ward’s方法的k-平均优化算法。算法首先在用Ward’s方法对样本数据初步聚类的基础上,确定合适的簇数目、初始聚类中心等k-平均算法的初始参数,并进行孤立点检测、删除;基于上述处理再采... 通过对k-平均算法存在不足的分析,提出了一种基于Ward’s方法的k-平均优化算法。算法首先在用Ward’s方法对样本数据初步聚类的基础上,确定合适的簇数目、初始聚类中心等k-平均算法的初始参数,并进行孤立点检测、删除;基于上述处理再采用传统k-平均算法进行聚类。将优化的k-平均算法应用到罪犯人格类型分析中,实验结果表明,该算法的效率、聚类效果均明显优于传统k-平均算法。 展开更多
关键词 K-平均算法 Ward’s方法 簇数目 初始聚类中心 孤立点检测
下载PDF
一种代表点的近似折半层次聚类算法 被引量:6
17
作者 王寅同 王建东 +2 位作者 陈海燕 徐涛 孙博 《小型微型计算机系统》 CSCD 北大核心 2015年第2期215-219,共5页
针对传统的代表点聚类算法对收缩因子的敏感性和聚类数不适应数据的动态变化等问题,综合研究凝聚型层次聚类问题,提出一种代表点的近似折半层次聚类算法——ABHCURE(Approximate Binary Hierarchical Clustering Using Representatives)... 针对传统的代表点聚类算法对收缩因子的敏感性和聚类数不适应数据的动态变化等问题,综合研究凝聚型层次聚类问题,提出一种代表点的近似折半层次聚类算法——ABHCURE(Approximate Binary Hierarchical Clustering Using Representatives),有效地解决了离群数据点对聚类结果的影响和聚类数的难确定问题.首先,提出单层多簇合并模式来提高算法的执行效率.其次,为了避免选择离群数据成为簇的代表点破坏原始数据分布,引入准噪声机制收集各层的准噪声数据增强算法的鲁棒性.最后,通过动态最小聚类数确定方式实现聚类数需求和确定难度的折衷.实验结果表明,该算法不仅运行时间相对较短,具有灵活的聚类数,还可以得到更高精确的聚类结果. 展开更多
关键词 层次聚类 近似折半 单层多簇 准噪声机制 聚类数
下载PDF
噪音特征对聚类内部有效性的影响 被引量:6
18
作者 杨虎 付宇 范丹 《计算机科学》 CSCD 北大核心 2018年第7期22-30,52,共10页
聚类内部有效性指标是在未知样本真实分类情况下用于评价聚类结果优劣、寻找最佳聚类个数的指标,是聚类分析研究中的重要内容。虽然已有大量的研究分析了聚类内部有效性指标的性能,且有研究结论表明某些内部有效性指标的性能良好,能够... 聚类内部有效性指标是在未知样本真实分类情况下用于评价聚类结果优劣、寻找最佳聚类个数的指标,是聚类分析研究中的重要内容。虽然已有大量的研究分析了聚类内部有效性指标的性能,且有研究结论表明某些内部有效性指标的性能良好,能够辅助聚类算法找到最佳聚类个数,但这些研究未考虑真实数据中的噪音特征对内部有效性指标的影响,研究结论可能会误导内部有效性指标的选取和应用。为此,选取了10种常用的内部有效性指标来研究噪音特征对内部有效性特征选择和聚类结果的影响。结果表明,数据中的噪音特征会影响内部有效性指标的性能,除KL指标、CH指标和CCC指标对噪音特征的反应相对不敏感外,其他内部有效性指标均对噪音特征敏感,且聚类结果的准确性会随着噪音的增强而降低。 展开更多
关键词 内部有效性 噪音特征 聚类个数 聚类准确度
下载PDF
K-means算法综述 被引量:6
19
作者 董文静 《信息与电脑》 2021年第11期76-78,共3页
在实际应用中,传统K-means算法存在k值需要预先指定、初始聚类中心随机选择等问题,都影响到K-means的性能。为了解决这些问题,产生了许多K-means算法的变体。笔者对传统K-means进行了简要概述,指出其存在的问题,总结了聚类数的确定、聚... 在实际应用中,传统K-means算法存在k值需要预先指定、初始聚类中心随机选择等问题,都影响到K-means的性能。为了解决这些问题,产生了许多K-means算法的变体。笔者对传统K-means进行了简要概述,指出其存在的问题,总结了聚类数的确定、聚类初始化、相似性度量以及噪声和离群值的敏感性等方面的改进,最后给出了进一步的研究方向。 展开更多
关键词 K-MEANS 集群数量 集群初始化 相似度测量 灵敏度
下载PDF
一种对孤立点不敏感的新的K-Means聚类算法 被引量:5
20
作者 包志强 赵媛媛 +1 位作者 胡啸天 赵研 《现代电子技术》 北大核心 2020年第5期109-112,共4页
针对传统K-Means聚类算法的不足,提出一种新的对孤立点不敏感的K-Means聚类算法。首先,采用孤立点移除算法消除数据集中存在的孤立点;然后,对不包含孤立点的数据集进行传统K-Means聚类,再引入轮廓系数并选择轮廓系数最大值对应的簇类数... 针对传统K-Means聚类算法的不足,提出一种新的对孤立点不敏感的K-Means聚类算法。首先,采用孤立点移除算法消除数据集中存在的孤立点;然后,对不包含孤立点的数据集进行传统K-Means聚类,再引入轮廓系数并选择轮廓系数最大值对应的簇类数作为数据集中簇的最优选择数目K;最后,通过自定义的聚类有效性评价函数评估聚类效果。实验结果表明,相对于传统K-Means聚类算法,对孤立点不敏感的新的K-Means聚类算法能够消除孤立点对数据集整体的影响,并优化了聚类中心的选择。 展开更多
关键词 K-MEANS聚类算法 孤立点 轮廓系数 簇类数 聚类有效性评价函数 聚类中心
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部