Since the standard K-ε model used to predict the strongly swirling flowleads to a large deviation from experimental results, it is necessary to introduce modification tothe standard K-ε model. Based on the algebraic...Since the standard K-ε model used to predict the strongly swirling flowleads to a large deviation from experimental results, it is necessary to introduce modification tothe standard K-ε model. Based on the algebraic Reynolds stress model and Bradshaw's turbulentlength scale modification conception, we present two modified K-ε models. To investigate thebehaviour of the modified turbulence models, they are used to predict two representative turbulentswirling flows. The computational results, after compared with the experimental data, show that themodified K-ε models substantially improve the prediction of the standard K-ε model for theturbulent swirling flows.展开更多
文摘Since the standard K-ε model used to predict the strongly swirling flowleads to a large deviation from experimental results, it is necessary to introduce modification tothe standard K-ε model. Based on the algebraic Reynolds stress model and Bradshaw's turbulentlength scale modification conception, we present two modified K-ε models. To investigate thebehaviour of the modified turbulence models, they are used to predict two representative turbulentswirling flows. The computational results, after compared with the experimental data, show that themodified K-ε models substantially improve the prediction of the standard K-ε model for theturbulent swirling flows.