The Last Glacial Maximum (LGM, c. 26-16 ka) and the Holocene Optimum (HO, c. 9-5 ka) were characterized by cold-dry and warm-wet climates respectively in the recently geological Earth. How Chinese deserts and sand fie...The Last Glacial Maximum (LGM, c. 26-16 ka) and the Holocene Optimum (HO, c. 9-5 ka) were characterized by cold-dry and warm-wet climates respectively in the recently geological Earth. How Chinese deserts and sand fields responded to these distinctive climatic changes is still not clear, however. To reconstruct environments of the deserts and sand fields during the LGM and HO is helpful to understand the forcing mechanisms of environment change in this arid region, and to test paleoclimatic modeling results. Through our long-term field and laboratory investigations, 400 optically stimulated luminescence (OSL) ages and more than 100 depositional records in the Chinese deserts and sand fields were obtained; on the basis of these data, we reconstruct spatial distributions of the deserts and sand fields during the LGM and HO. Our results show that the sand fields of Mu Us, Hunshandake, Horqin and Hulun Buir in northern and northeastern China had expanded 25%, 37%, 38% and 270%, respectively, during the LGM; the sand fields of Gonghe in the northeastern Qinghai-Tibetan Plateau had expanded 20%, and the deserts of Badain Jaran, Tengger in central northern China had expanded 39% and 29% separately during the LGM; the deserts of Taklimakan, Gurbantünggüt and Kumtag in northwestern China had expanded 10%-20% respectively, compared to their modern areas. On the other hand, all of the sand fields were nearly completely covered by vegetation during the HO; the deserts in northwestern and central northern China were reduced by around 5%-20% in area during this time. Lakes in this arid region were probably expanded during the HO but this conclusion needs more investigation. Compared with the geological distributions of deserts and sand fields, human activity has clearly changed (expanded) the area of active sand dunes at the present time. Our observations show that environmental conditions of Chinese deserts and sand fields are controlled by regional climate together with human activity.展开更多
根据冰川地貌和地形特征、岩性、冰川沉积物的风化程度以及OSL测年结果,认为长白山地区发育两期冰川作用,即末次冰盛期和晚冰期,测年结果分别为20.0±2.1ka和11.3±1.2ka。根据平衡线(ELA)处6~8月多年平均气温(T)和年降水量...根据冰川地貌和地形特征、岩性、冰川沉积物的风化程度以及OSL测年结果,认为长白山地区发育两期冰川作用,即末次冰盛期和晚冰期,测年结果分别为20.0±2.1ka和11.3±1.2ka。根据平衡线(ELA)处6~8月多年平均气温(T)和年降水量(P)的关系,计算长白山现代理论雪线高度为3380±100m。通过积累区面积比率AAR(accumulation-arearatio)、冰川末端到山顶高度TSAM(the terminal to summit altitudinal),冰川末端至分水岭平均高度Hofer(the terminal to average elevation of the catchment area)、末端至冰斗后壁比率THAR(toe-to headwall altitude ratios)、冰斗底部高程CF(cirque-floor altitudes method)、侧碛堤最大高度法MELM(maximum elevation of lateral moraines)等方法计算该区末次冰盛期雪线高度为2250~2383m,平均值2320±20m。考虑到末次冰盛期后地壳上升20m,当时雪线的实际高度为2300±20m,冰盛期的雪线降低值为1080±100m。晚冰期北坡和西坡的雪线高度分别为2490m和2440m,平均值2465m,考虑新构造运动后的雪线实际高度2454m,降低值926±100m。长白山新构造运动(LGM上升约20m,晚冰期上升约11m)在末次冰盛期以来对冰川发育的影响不明显。展开更多
基金supported by the Global Changes Program of Ministry of Science and Technology of China(2010CB950203)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA05120704)+1 种基金the National Natural Science Foundation of China(40930103 and 41021002)China National Science and Technology Basic Work Program(2006FY110800 and 2012FY111700)
文摘The Last Glacial Maximum (LGM, c. 26-16 ka) and the Holocene Optimum (HO, c. 9-5 ka) were characterized by cold-dry and warm-wet climates respectively in the recently geological Earth. How Chinese deserts and sand fields responded to these distinctive climatic changes is still not clear, however. To reconstruct environments of the deserts and sand fields during the LGM and HO is helpful to understand the forcing mechanisms of environment change in this arid region, and to test paleoclimatic modeling results. Through our long-term field and laboratory investigations, 400 optically stimulated luminescence (OSL) ages and more than 100 depositional records in the Chinese deserts and sand fields were obtained; on the basis of these data, we reconstruct spatial distributions of the deserts and sand fields during the LGM and HO. Our results show that the sand fields of Mu Us, Hunshandake, Horqin and Hulun Buir in northern and northeastern China had expanded 25%, 37%, 38% and 270%, respectively, during the LGM; the sand fields of Gonghe in the northeastern Qinghai-Tibetan Plateau had expanded 20%, and the deserts of Badain Jaran, Tengger in central northern China had expanded 39% and 29% separately during the LGM; the deserts of Taklimakan, Gurbantünggüt and Kumtag in northwestern China had expanded 10%-20% respectively, compared to their modern areas. On the other hand, all of the sand fields were nearly completely covered by vegetation during the HO; the deserts in northwestern and central northern China were reduced by around 5%-20% in area during this time. Lakes in this arid region were probably expanded during the HO but this conclusion needs more investigation. Compared with the geological distributions of deserts and sand fields, human activity has clearly changed (expanded) the area of active sand dunes at the present time. Our observations show that environmental conditions of Chinese deserts and sand fields are controlled by regional climate together with human activity.
文摘根据冰川地貌和地形特征、岩性、冰川沉积物的风化程度以及OSL测年结果,认为长白山地区发育两期冰川作用,即末次冰盛期和晚冰期,测年结果分别为20.0±2.1ka和11.3±1.2ka。根据平衡线(ELA)处6~8月多年平均气温(T)和年降水量(P)的关系,计算长白山现代理论雪线高度为3380±100m。通过积累区面积比率AAR(accumulation-arearatio)、冰川末端到山顶高度TSAM(the terminal to summit altitudinal),冰川末端至分水岭平均高度Hofer(the terminal to average elevation of the catchment area)、末端至冰斗后壁比率THAR(toe-to headwall altitude ratios)、冰斗底部高程CF(cirque-floor altitudes method)、侧碛堤最大高度法MELM(maximum elevation of lateral moraines)等方法计算该区末次冰盛期雪线高度为2250~2383m,平均值2320±20m。考虑到末次冰盛期后地壳上升20m,当时雪线的实际高度为2300±20m,冰盛期的雪线降低值为1080±100m。晚冰期北坡和西坡的雪线高度分别为2490m和2440m,平均值2465m,考虑新构造运动后的雪线实际高度2454m,降低值926±100m。长白山新构造运动(LGM上升约20m,晚冰期上升约11m)在末次冰盛期以来对冰川发育的影响不明显。