Land-use/land-cover changes (LUCCs) have links to both human and nature inter- actions. China's Land-Use/cover Datasets (CLUDs) were updated regularly at 5-year inter- vals from the late 1980s to 2010, with stand...Land-use/land-cover changes (LUCCs) have links to both human and nature inter- actions. China's Land-Use/cover Datasets (CLUDs) were updated regularly at 5-year inter- vals from the late 1980s to 2010, with standard procedures based on Landsat TM/ETM+ im- ages. A land-use dynamic regionalization method was proposed to analyze major land-use conversions. The spatiotemporal characteristics, differences, and causes of land-use changes at a national scale were then examined. The main findings are summarized as fol- lows. Land-use changes (LUCs) across China indicated a significant variation in spatial and temporal characteristics in the last 20 years (1990-2010). The area of cropland change de- creased in the south and increased in the north, but the total area remained almost un- changed. The reclaimed cropland was shifted from the northeast to the northwest. The built-up lands expanded rapidly, were mainly distributed in the east, and gradually spread out to central and western China. Woodland decreased first, and then increased, but desert area was the opposite. Grassland continued decreasing. Different spatial patterns of LUC in China were found between the late 20th century and the early 21st century. The original 13 LUC zones were replaced by 15 units with changes of boundaries in some zones. The main spatial characteristics of these changes included (1) an accelerated expansion of built-up land in the Huang-Huai-Hai region, the southeastern coastal areas, the midstream area of the Yangtze River, and the Sichuan Basin; (2) shifted land reclamation in the north from northeast China and eastern Inner Mongolia to the oasis agricultural areas in northwest China; (3) continuous transformation from rain-fed farmlands in northeast China to paddy fields; and (4) effective- ness of the "Grain for Green" project in the southern agricultural-pastoral ecotones of Inner Mongolia, the Loess Plateau, and southwestern mountainous areas. In the last two decades, although climate change展开更多
基于代表性浓度路径情景(Representative Concentration Pathways,RCPs),耦合FLUS-InVEST(Future Land Use Simulation-Integrated Valuation of Ecosystem Services and Trade-offs,FLUS-InVEST)模型,以土地利用视角模拟了中国2100年...基于代表性浓度路径情景(Representative Concentration Pathways,RCPs),耦合FLUS-InVEST(Future Land Use Simulation-Integrated Valuation of Ecosystem Services and Trade-offs,FLUS-InVEST)模型,以土地利用视角模拟了中国2100年的陆地生态系统碳储量,探讨其空间分异。结果表明:1)历史土地利用变化作用下,中国生态系统碳储量减少中心由华北地区转向东北地区,增加中心由西北地区转向西南地区;碳储量的减少由林地生态系统转向草地生态系统。2)未来RCPs情景下,中国林地生态系统碳储量都将持续增加,草地生态系统碳储量持续减少。RCP 6.0情景下,中国林地面积将增加9.43%左右,草地面积减少5.42%,全国林地碳储量较2010年增加2 332.64 Tg,而草地碳储量将损失1 719.03 Tg。在RCP 8.5情景下,全国林地面积增加5.15%,草地面积将减少5.10%,林地碳储量较2010年将增加1 754.59 Tg,草地碳储量将损失2 468.80 Tg。3)RCP 6.0情景对未来碳汇贡献度较RCP 8.5情景大。在RCP 6.0情景下,植被地上碳储量和表层土壤碳储量分别净增加127.12和83.67 Tg。但在RCP 8.5情景下,植被地上碳储量和表层土壤碳储量分别净减少24.67和32.41 Tg。4)不同RCPs情景下,碳储量增长均集中在横断山-秦岭-太行山-大兴安岭和雪峰山-太行山-大兴安岭两带;减少区域主要分布于云贵高原、四川盆地和京津冀地区。展开更多
水源是区域和城市发展的重要保障,研究其生态系统服务的变化及其影响因素对水源跨区域联防联治有重要意义。利用淀山湖地区1984、1993、2006和2014年的遥感影像,通过修正生态系统服务价值当量因子,基于GIS空间分析技术对淀山湖地区1984...水源是区域和城市发展的重要保障,研究其生态系统服务的变化及其影响因素对水源跨区域联防联治有重要意义。利用淀山湖地区1984、1993、2006和2014年的遥感影像,通过修正生态系统服务价值当量因子,基于GIS空间分析技术对淀山湖地区1984—1993年、1993—2006年、2006—2014年土地利用变化及生态系统服务价值(Ecosystem Service Value, ESV)进行了分析。结果表明,淀山湖地区林地面积和建筑用地面总体呈增加趋势,而耕地面积和水体面积呈下降趋势。ESV结果显示,1984—2014期间水体ESV减少了2.15亿元,耕地的ESV减少了2.41亿元,林地的ESV增加了2.50亿元。各土地利用类型ESV敏感性指数均小于1,说明研究区生态系统服务价值是缺乏弹性的。在乡镇尺度,仅朱家角镇和锦溪镇ESV呈现净增长;在省市级尺度,江苏省境内的总土地单位面积ESV减少,而上海市境内的总土地单位面积ESV增加。驱动力分析表明,自然因素和社会经济因素均对ESV有影响,人口密度、区域总产值与ESV存在显著相关性。可见,土地利用方式的改变显著影响生态系统服务价值,合理的土地利用将有利于提高总土地单位面积生态系统服务价值。展开更多
Land use/cover change is an important theme on the impacts of human activities on the earth systems and global environmental change. National land-use changes of China during 2010–2015 were acquired by the digital in...Land use/cover change is an important theme on the impacts of human activities on the earth systems and global environmental change. National land-use changes of China during 2010–2015 were acquired by the digital interpretation method using the high-resolution remotely sensed images, e.g. the Landsat 8 OLI, GF-2 remote sensing images. The spatiotemporal characteristics of land-use changes across China during 2010–2015 were revealed by the indexes of dynamic degree model, annual land-use changes ratio etc. The results indicated that the built-up land increased by 24.6×10~3 km^2 while the cropland decreased by 4.9×10~3 km^2, and the total area of woodland and grassland decreased by 16.4×10~3 km^2. The spatial pattern of land-use changes in China during 2010–2015 was concordant with that of the period 2000–2010. Specially, new characteristics of land-use changes emerged in different regions of China in 2010–2015. The built-up land in eastern China expanded continually, and the total area of cropland decreased, both at decreasing rates. The rates of built-up land expansion and cropland shrinkage were accelerated in central China. The rates of built-up land expansion and cropland growth increased in western China, while the decreasing rate of woodland and grassland accelerated. In northeastern China, built-up land expansion slowed continually, and cropland area increased slightly accompanied by the conversions between paddy land and dry land. Besides, woodland and grassland area decreased in northeastern China. The characteristics of land-use changes in eastern China were essentially consistent with the spatial govern and control requirements of the optimal development zones and key development zones according to the Major Function-oriented Zones Planning implemented during the 12 th Five-Year Plan(2011–2015). It was a serious challenge for the central government of China to effectively protect the reasonable layout of land use types dominated with the key ecological function zones and agricultural pro展开更多
基金National Basic Research Program of China,No.2010CB950900No.2014CB954302+1 种基金National Key Technol-ogy R&D Program,No.2013BAC03B00The Key Research Program of the Chinese Academy of Sciences,No.KSZD-EW-Z-021-02
文摘Land-use/land-cover changes (LUCCs) have links to both human and nature inter- actions. China's Land-Use/cover Datasets (CLUDs) were updated regularly at 5-year inter- vals from the late 1980s to 2010, with standard procedures based on Landsat TM/ETM+ im- ages. A land-use dynamic regionalization method was proposed to analyze major land-use conversions. The spatiotemporal characteristics, differences, and causes of land-use changes at a national scale were then examined. The main findings are summarized as fol- lows. Land-use changes (LUCs) across China indicated a significant variation in spatial and temporal characteristics in the last 20 years (1990-2010). The area of cropland change de- creased in the south and increased in the north, but the total area remained almost un- changed. The reclaimed cropland was shifted from the northeast to the northwest. The built-up lands expanded rapidly, were mainly distributed in the east, and gradually spread out to central and western China. Woodland decreased first, and then increased, but desert area was the opposite. Grassland continued decreasing. Different spatial patterns of LUC in China were found between the late 20th century and the early 21st century. The original 13 LUC zones were replaced by 15 units with changes of boundaries in some zones. The main spatial characteristics of these changes included (1) an accelerated expansion of built-up land in the Huang-Huai-Hai region, the southeastern coastal areas, the midstream area of the Yangtze River, and the Sichuan Basin; (2) shifted land reclamation in the north from northeast China and eastern Inner Mongolia to the oasis agricultural areas in northwest China; (3) continuous transformation from rain-fed farmlands in northeast China to paddy fields; and (4) effective- ness of the "Grain for Green" project in the southern agricultural-pastoral ecotones of Inner Mongolia, the Loess Plateau, and southwestern mountainous areas. In the last two decades, although climate change
文摘水源是区域和城市发展的重要保障,研究其生态系统服务的变化及其影响因素对水源跨区域联防联治有重要意义。利用淀山湖地区1984、1993、2006和2014年的遥感影像,通过修正生态系统服务价值当量因子,基于GIS空间分析技术对淀山湖地区1984—1993年、1993—2006年、2006—2014年土地利用变化及生态系统服务价值(Ecosystem Service Value, ESV)进行了分析。结果表明,淀山湖地区林地面积和建筑用地面总体呈增加趋势,而耕地面积和水体面积呈下降趋势。ESV结果显示,1984—2014期间水体ESV减少了2.15亿元,耕地的ESV减少了2.41亿元,林地的ESV增加了2.50亿元。各土地利用类型ESV敏感性指数均小于1,说明研究区生态系统服务价值是缺乏弹性的。在乡镇尺度,仅朱家角镇和锦溪镇ESV呈现净增长;在省市级尺度,江苏省境内的总土地单位面积ESV减少,而上海市境内的总土地单位面积ESV增加。驱动力分析表明,自然因素和社会经济因素均对ESV有影响,人口密度、区域总产值与ESV存在显著相关性。可见,土地利用方式的改变显著影响生态系统服务价值,合理的土地利用将有利于提高总土地单位面积生态系统服务价值。
基金National Key Research and Development Program,No.2017YFC0506501National Key Basic Research Program of China,No.2014CB954302
文摘Land use/cover change is an important theme on the impacts of human activities on the earth systems and global environmental change. National land-use changes of China during 2010–2015 were acquired by the digital interpretation method using the high-resolution remotely sensed images, e.g. the Landsat 8 OLI, GF-2 remote sensing images. The spatiotemporal characteristics of land-use changes across China during 2010–2015 were revealed by the indexes of dynamic degree model, annual land-use changes ratio etc. The results indicated that the built-up land increased by 24.6×10~3 km^2 while the cropland decreased by 4.9×10~3 km^2, and the total area of woodland and grassland decreased by 16.4×10~3 km^2. The spatial pattern of land-use changes in China during 2010–2015 was concordant with that of the period 2000–2010. Specially, new characteristics of land-use changes emerged in different regions of China in 2010–2015. The built-up land in eastern China expanded continually, and the total area of cropland decreased, both at decreasing rates. The rates of built-up land expansion and cropland shrinkage were accelerated in central China. The rates of built-up land expansion and cropland growth increased in western China, while the decreasing rate of woodland and grassland accelerated. In northeastern China, built-up land expansion slowed continually, and cropland area increased slightly accompanied by the conversions between paddy land and dry land. Besides, woodland and grassland area decreased in northeastern China. The characteristics of land-use changes in eastern China were essentially consistent with the spatial govern and control requirements of the optimal development zones and key development zones according to the Major Function-oriented Zones Planning implemented during the 12 th Five-Year Plan(2011–2015). It was a serious challenge for the central government of China to effectively protect the reasonable layout of land use types dominated with the key ecological function zones and agricultural pro