This article considers the existence of solution for a boundary value problem of fractional order, involving Caputo's derivative{C0D^δtu(t)=g(t,u(t)),0〈t〈1,1〈δ〈2,u(0)α≠0,u(1)=β≠0.
Several existence theorems were established for a nonlinear fourth-order two-point boundary value problem with second derivative by using Leray-Schauder fixed point theorem, equivalent norm and technique on system of ...Several existence theorems were established for a nonlinear fourth-order two-point boundary value problem with second derivative by using Leray-Schauder fixed point theorem, equivalent norm and technique on system of integral equations. The main conditions of our results are local. In other words, the existence of the solution can be determined by considering the height of the nonlinear term on a bounded set. This class of problems usually describes the equilibrium state of an elastic beam which is simply supported at both ends.展开更多
基金Supported by the National 973-Project from MOST and Trans-Century Training Programme Foundation for the Talents by Ministry of Education and the Postdoctoral Foundation of China.
文摘This article considers the existence of solution for a boundary value problem of fractional order, involving Caputo's derivative{C0D^δtu(t)=g(t,u(t)),0〈t〈1,1〈δ〈2,u(0)α≠0,u(1)=β≠0.
文摘Several existence theorems were established for a nonlinear fourth-order two-point boundary value problem with second derivative by using Leray-Schauder fixed point theorem, equivalent norm and technique on system of integral equations. The main conditions of our results are local. In other words, the existence of the solution can be determined by considering the height of the nonlinear term on a bounded set. This class of problems usually describes the equilibrium state of an elastic beam which is simply supported at both ends.