The objective is to develop an approach for the determination of the target reliability index for serviceability limit state(SLS) of single piles. This contributes to conducting the SLS reliability-based design(RBD) o...The objective is to develop an approach for the determination of the target reliability index for serviceability limit state(SLS) of single piles. This contributes to conducting the SLS reliability-based design(RBD) of piles. Based on a two-parameter,hyperbolic curve-fitting equation describing the load-settlement relation of piles, the SLS model factor is defined. Then, taking into account the uncertainties of load-settlement model, load and bearing capacity of piles, the formula for computing the SLS reliability index(βsls) is obtained using the mean value first order second moment(MVFOSM) method. Meanwhile, the limit state function for conducting the SLS reliability analysis by the Monte Carlo simulation(MCS) method is established. These two methods are finally applied to determine the SLS target reliability index. Herein, the limiting tolerable settlement(slt) is treated as a random variable. For illustration, four load test databases from South Africa are compiled again to conduct reliability analysis and present the recommended target reliability indices. The results indicate that the MVFOSM method overestimates βsls compared to that computed by the MCS method. Besides, both factor of safety(FS) and slt are key factors influencing βsls, so the combination of FS and βsls is welcome to be used for the SLS reliability analysis of piles when slt is determined. For smaller slt, pile types and soils conditions have significant influence on the SLS target reliability indices; for larger slt, slt is the major factor having influence on the SLS target reliability indices. This proves that slt is the most key parameter for the determination of the SLS target reliability index.展开更多
Routine reliability index method, first order second moment (FOSM), may not ensure convergence of iteration when the performance function is strongly nonlinear. A modified method was proposed to calculate reliability ...Routine reliability index method, first order second moment (FOSM), may not ensure convergence of iteration when the performance function is strongly nonlinear. A modified method was proposed to calculate reliability index based on maximum entropy (MaxEnt) principle. To achieve this goal, the complicated iteration of first order second moment (FOSM) method was replaced by the calculation of entropy density function. Local convergence of Newton iteration method utilized to calculate entropy density function was proved, which ensured the convergence of iteration when calculating reliability index. To promote calculation efficiency, Newton down-hill algorithm was incorporated into calculating entropy density function and Monte Carlo simulations (MCS) were performed to assess the efficiency of the presented method. Two numerical examples were presented to verify the validation of the presented method. Moreover, the execution and advantages of the presented method were explained. From Example 1, after seven times iteration, the proposed method is capable of calculating the reliability index when the performance function is strongly nonlinear and at the same time the proposed method can preserve the calculation accuracy; From Example 2, the reliability indices calculated using the proposed method, FOSM and MCS are 3.823 9, 3.813 0 and 3.827 6, respectively, and the according iteration times are 5, 36 and 10 6 , which shows that the presented method can improve calculation accuracy without increasing computational cost for the performance function of which the reliability index can be calculated using first order second moment (FOSM) method.展开更多
The R F first order second moment method will produce more error for calculating the reliability of welded engineering pipe structures when the failure function is seriously nonlinear and the random variables don...The R F first order second moment method will produce more error for calculating the reliability of welded engineering pipe structures when the failure function is seriously nonlinear and the random variables don′t serve as normal distribution. In order to increase the computing accuracy of reliability, an improved FOSM method is used for calculating the failure probability of welded pipes with flaws in this paper. Because of solving the problems of the linear expansion of failure function at the failure point and constructing equivalent normal variables, the new algorithm can greatly improve the calculating accuracy of probability of the welded pipes with cracks. The examples show that this method is simple, efficient and accurate for reliability safety assessment of the welded pipes with cracks. It can save more time than the Monte Carlo method does, so that the improved FOSM method is recommended for engineering reliability safety assessment of the welded pipes with flaws.展开更多
Considering a damped linear oscillator model subjected to a white noise with an inherent angular frequency and a periodic external driving force, we derive the analytic expression of the first moment of output respons...Considering a damped linear oscillator model subjected to a white noise with an inherent angular frequency and a periodic external driving force, we derive the analytic expression of the first moment of output response, and study the stochastic resonance phenomenon in a system. The results show that the output response of this system behaves as a simple harmonic vibration, of which the frequency is the same as the external driving frequency, and the variations of amplitude with the driving frequency and the inherent frequency present a bona fide stochastic resonance.展开更多
Photoionization time delays have been studied in many streaking experiments in which an attosecond pulse is used to ionize the atomic or solid state target in the presence of a dressing infrared laser field. Among the...Photoionization time delays have been studied in many streaking experiments in which an attosecond pulse is used to ionize the atomic or solid state target in the presence of a dressing infrared laser field. Among the methods of extracting the time delay from the streaking spectrogram, the simplest one is to calculate the first moment of the spectrogram and to measure its offset relative to the vector potential of the infrared field. The first moment method has been used in many theoretical simulations and analysis of experimental data, but the meaning of this offset needs to be investigated. We simulate the spectrograms and compare the extracted time delay from the first moment with the input Wigner delay. In this study, we show that the first moment method is valid only when the group delay dispersions corresponding to both the spectral phase of the attosecond pulse and the phase of the single-photon transition dipole matrix element of the target are small. Under such circumstance, the electron wave packet behaves like a classical particle and the extracted time delay can be related to a group delay in the photoionization process. To avoid ambiguity and confusion, we also suggest that the photoionization time delay be replaced by photoionization group delay and the Wigner time delay be replaced by Wigner group delay.展开更多
The uncertainties of some key influence factors on coal crushing,such as rock strength,pore pressure and magnitude and orientation of three principal stresses,can lead to the uncertainty of coal crushing and make it v...The uncertainties of some key influence factors on coal crushing,such as rock strength,pore pressure and magnitude and orientation of three principal stresses,can lead to the uncertainty of coal crushing and make it very difficult to predict coal crushing under the condition of in-situ reservoir.To account for the uncertainty involved in coal crushing,a deterministic prediction model of coal crushing under the condition of in-situ reservoir was established based on Hoek-Brown criterion.Through this model,key influence factors on coal crushing were selected as random variables and the corresponding probability density functions were determined by combining experiment data and Latin Hypercube method.Then,to analyze the uncertainty of coal crushing,the firstorder second-moment method and the presented model were combined to address the failure probability involved in coal crushing analysis.Using the presented method,the failure probabilities of coal crushing were analyzed for WS5-5 well in Ningwu basin,China,and the relations between failure probability and the influence factors were furthermore discussed.The results show that the failure probabilities of WS5-5 CBM well vary from 0.6 to 1.0; moreover,for the coal seam section at depth of 784.3-785 m,the failure probabilities are equal to 1,which fit well with experiment results; the failure probability of coal crushing presents nonlinear growth relationships with the increase of principal stress difference and the decrease of uniaxial compressive strength.展开更多
基金Projects(51278216,51308241)supported by the National Natural Science Foundation of ChinaProject(2013BS010)supported by the Funds of Henan University of Technology for High-level Talents,China
文摘The objective is to develop an approach for the determination of the target reliability index for serviceability limit state(SLS) of single piles. This contributes to conducting the SLS reliability-based design(RBD) of piles. Based on a two-parameter,hyperbolic curve-fitting equation describing the load-settlement relation of piles, the SLS model factor is defined. Then, taking into account the uncertainties of load-settlement model, load and bearing capacity of piles, the formula for computing the SLS reliability index(βsls) is obtained using the mean value first order second moment(MVFOSM) method. Meanwhile, the limit state function for conducting the SLS reliability analysis by the Monte Carlo simulation(MCS) method is established. These two methods are finally applied to determine the SLS target reliability index. Herein, the limiting tolerable settlement(slt) is treated as a random variable. For illustration, four load test databases from South Africa are compiled again to conduct reliability analysis and present the recommended target reliability indices. The results indicate that the MVFOSM method overestimates βsls compared to that computed by the MCS method. Besides, both factor of safety(FS) and slt are key factors influencing βsls, so the combination of FS and βsls is welcome to be used for the SLS reliability analysis of piles when slt is determined. For smaller slt, pile types and soils conditions have significant influence on the SLS target reliability indices; for larger slt, slt is the major factor having influence on the SLS target reliability indices. This proves that slt is the most key parameter for the determination of the SLS target reliability index.
基金Project(50978112) supported by the National Natural Science Foundation of China
文摘Routine reliability index method, first order second moment (FOSM), may not ensure convergence of iteration when the performance function is strongly nonlinear. A modified method was proposed to calculate reliability index based on maximum entropy (MaxEnt) principle. To achieve this goal, the complicated iteration of first order second moment (FOSM) method was replaced by the calculation of entropy density function. Local convergence of Newton iteration method utilized to calculate entropy density function was proved, which ensured the convergence of iteration when calculating reliability index. To promote calculation efficiency, Newton down-hill algorithm was incorporated into calculating entropy density function and Monte Carlo simulations (MCS) were performed to assess the efficiency of the presented method. Two numerical examples were presented to verify the validation of the presented method. Moreover, the execution and advantages of the presented method were explained. From Example 1, after seven times iteration, the proposed method is capable of calculating the reliability index when the performance function is strongly nonlinear and at the same time the proposed method can preserve the calculation accuracy; From Example 2, the reliability indices calculated using the proposed method, FOSM and MCS are 3.823 9, 3.813 0 and 3.827 6, respectively, and the according iteration times are 5, 36 and 10 6 , which shows that the presented method can improve calculation accuracy without increasing computational cost for the performance function of which the reliability index can be calculated using first order second moment (FOSM) method.
文摘The R F first order second moment method will produce more error for calculating the reliability of welded engineering pipe structures when the failure function is seriously nonlinear and the random variables don′t serve as normal distribution. In order to increase the computing accuracy of reliability, an improved FOSM method is used for calculating the failure probability of welded pipes with flaws in this paper. Because of solving the problems of the linear expansion of failure function at the failure point and constructing equivalent normal variables, the new algorithm can greatly improve the calculating accuracy of probability of the welded pipes with cracks. The examples show that this method is simple, efficient and accurate for reliability safety assessment of the welded pipes with cracks. It can save more time than the Monte Carlo method does, so that the improved FOSM method is recommended for engineering reliability safety assessment of the welded pipes with flaws.
基金Project supported by the National Natural Science Foundation of China(Grant No.11045004)the Key Program of the Scientific Research Foundation of the Education Bureau of Hubei Province,Chain(Grant No.D20101506)
文摘Considering a damped linear oscillator model subjected to a white noise with an inherent angular frequency and a periodic external driving force, we derive the analytic expression of the first moment of output response, and study the stochastic resonance phenomenon in a system. The results show that the output response of this system behaves as a simple harmonic vibration, of which the frequency is the same as the external driving frequency, and the variations of amplitude with the driving frequency and the inherent frequency present a bona fide stochastic resonance.
基金Project supported by the Talent Introduction Foundation of Qiannan Normal University of Nationalities,China(Grant No.qnsyrc201619)Natural Science Foundation of Guizhou Provincial Education Department for Young Talents,China(Grant No.Qian Education Contract KY[2017]339)Chemical Sciences,Geosciences and Biosciences Division,Office of Basic Energy Sciences,Office of Science,U.S.Department of Energy(Grant No.DE-FG02-86ER13491)
文摘Photoionization time delays have been studied in many streaking experiments in which an attosecond pulse is used to ionize the atomic or solid state target in the presence of a dressing infrared laser field. Among the methods of extracting the time delay from the streaking spectrogram, the simplest one is to calculate the first moment of the spectrogram and to measure its offset relative to the vector potential of the infrared field. The first moment method has been used in many theoretical simulations and analysis of experimental data, but the meaning of this offset needs to be investigated. We simulate the spectrograms and compare the extracted time delay from the first moment with the input Wigner delay. In this study, we show that the first moment method is valid only when the group delay dispersions corresponding to both the spectral phase of the attosecond pulse and the phase of the single-photon transition dipole matrix element of the target are small. Under such circumstance, the electron wave packet behaves like a classical particle and the extracted time delay can be related to a group delay in the photoionization process. To avoid ambiguity and confusion, we also suggest that the photoionization time delay be replaced by photoionization group delay and the Wigner time delay be replaced by Wigner group delay.
基金Project(51204201)supported by the National Natural Science Foundation of ChinaProjects(2011ZX05036-001,2011ZX05037-004)supported by the National Science and Technology Major Program of China+1 种基金Project(2010CB226706)supported by the National Basic Research Program of ChinaProject(11CX04050A)supported by the Fundamental Research Funds for the Central Universities of China
文摘The uncertainties of some key influence factors on coal crushing,such as rock strength,pore pressure and magnitude and orientation of three principal stresses,can lead to the uncertainty of coal crushing and make it very difficult to predict coal crushing under the condition of in-situ reservoir.To account for the uncertainty involved in coal crushing,a deterministic prediction model of coal crushing under the condition of in-situ reservoir was established based on Hoek-Brown criterion.Through this model,key influence factors on coal crushing were selected as random variables and the corresponding probability density functions were determined by combining experiment data and Latin Hypercube method.Then,to analyze the uncertainty of coal crushing,the firstorder second-moment method and the presented model were combined to address the failure probability involved in coal crushing analysis.Using the presented method,the failure probabilities of coal crushing were analyzed for WS5-5 well in Ningwu basin,China,and the relations between failure probability and the influence factors were furthermore discussed.The results show that the failure probabilities of WS5-5 CBM well vary from 0.6 to 1.0; moreover,for the coal seam section at depth of 784.3-785 m,the failure probabilities are equal to 1,which fit well with experiment results; the failure probability of coal crushing presents nonlinear growth relationships with the increase of principal stress difference and the decrease of uniaxial compressive strength.