In this paper, we studied the long-time properties of solutions of generalized Kirchhoff-type equation with strongly damped terms. Firstly, appropriate assumptions are made for the nonlinear source term <span style...In this paper, we studied the long-time properties of solutions of generalized Kirchhoff-type equation with strongly damped terms. Firstly, appropriate assumptions are made for the nonlinear source term <span style="white-space:nowrap;"><em>g</em> (<em>u</em>)</span> and Kirchhoff stress term <span style="white-space:nowrap;"><em>M</em> (<em>s</em>)</span> in the equation, and the existence and uniqueness of the solution are proved by using uniform prior estimates of time and Galerkin’s finite element method. Then, abounded absorption set <em>B</em><sub>0<em>k</em></sub> is obtained by prior estimation, and the Rellich-kondrachov’s compact embedding theorem is used to prove that the solution semigroup <span style="white-space:nowrap;"><em>S</em> (<em>t</em>)</span> generated by the equation has a family of the global attractor <span style="white-space:nowrap;"><em>A</em><sub><em>k</em></sub></span> in the phase space <img src="Edit_250265b5-40f0-4b6c-b669-958eb1938010.png" width="120" height="20" alt="" />. Finally, linearize the equation and verify that the semigroups are Frechet diifferentiable on <em>E<sub>k</sub></em>. Then, the upper boundary estimation of the Hausdorff dimension and Fractal dimension of a family of the global attractor <em>A<sub>k</sub></em> was obtained.展开更多
We study the solvability of the Cauchy problem (1.1)-(1.2) for the largest possible class of initial values,for which (1.1)-(1.2) has a local solution.Moreover,we also study the critical case related to the in...We study the solvability of the Cauchy problem (1.1)-(1.2) for the largest possible class of initial values,for which (1.1)-(1.2) has a local solution.Moreover,we also study the critical case related to the initial value u<sub>0</sub>,for 1【p【∞.展开更多
The uniqueness theorem of time-harmonic electromagnetic fields, which is the theoretical basis of boundary value problem (BVP) of electromagnetic fields, is reviewed. So far there are many versions of the statements a...The uniqueness theorem of time-harmonic electromagnetic fields, which is the theoretical basis of boundary value problem (BVP) of electromagnetic fields, is reviewed. So far there are many versions of the statements and proofs on the theorem. However, there exist some limitations and lack of strictness in these versions, for instance, the discussion of the uniqueness of solution without considering the existence of solution and the lack of strictness in the case of loss-less medium. In contrast with the traditional statements and proofs, this paper introduces some important conclusions on operator equation from modern theory of partial differential equation (PDE) and attempts to solve the problems on the existence and uniqueness of the solution to operator equation which is derived from Maxwell’s equations of time-harmonic electromagnetic fields. This method provides a novel and rigorous approach to discuss and solve the existence and uniqueness of the solution to time- harmonic fields in the new mathematical framework. Some important conclusions are presented.展开更多
文摘In this paper, we studied the long-time properties of solutions of generalized Kirchhoff-type equation with strongly damped terms. Firstly, appropriate assumptions are made for the nonlinear source term <span style="white-space:nowrap;"><em>g</em> (<em>u</em>)</span> and Kirchhoff stress term <span style="white-space:nowrap;"><em>M</em> (<em>s</em>)</span> in the equation, and the existence and uniqueness of the solution are proved by using uniform prior estimates of time and Galerkin’s finite element method. Then, abounded absorption set <em>B</em><sub>0<em>k</em></sub> is obtained by prior estimation, and the Rellich-kondrachov’s compact embedding theorem is used to prove that the solution semigroup <span style="white-space:nowrap;"><em>S</em> (<em>t</em>)</span> generated by the equation has a family of the global attractor <span style="white-space:nowrap;"><em>A</em><sub><em>k</em></sub></span> in the phase space <img src="Edit_250265b5-40f0-4b6c-b669-958eb1938010.png" width="120" height="20" alt="" />. Finally, linearize the equation and verify that the semigroups are Frechet diifferentiable on <em>E<sub>k</sub></em>. Then, the upper boundary estimation of the Hausdorff dimension and Fractal dimension of a family of the global attractor <em>A<sub>k</sub></em> was obtained.
基金Project supported by the National Natural Science Foundation of China (19971070)
文摘We study the solvability of the Cauchy problem (1.1)-(1.2) for the largest possible class of initial values,for which (1.1)-(1.2) has a local solution.Moreover,we also study the critical case related to the initial value u<sub>0</sub>,for 1【p【∞.
文摘The uniqueness theorem of time-harmonic electromagnetic fields, which is the theoretical basis of boundary value problem (BVP) of electromagnetic fields, is reviewed. So far there are many versions of the statements and proofs on the theorem. However, there exist some limitations and lack of strictness in these versions, for instance, the discussion of the uniqueness of solution without considering the existence of solution and the lack of strictness in the case of loss-less medium. In contrast with the traditional statements and proofs, this paper introduces some important conclusions on operator equation from modern theory of partial differential equation (PDE) and attempts to solve the problems on the existence and uniqueness of the solution to operator equation which is derived from Maxwell’s equations of time-harmonic electromagnetic fields. This method provides a novel and rigorous approach to discuss and solve the existence and uniqueness of the solution to time- harmonic fields in the new mathematical framework. Some important conclusions are presented.
基金Research supported by the National Natural Science Foundation of China(10671168)Jiangsu Province(BK2006032)+2 种基金Educa-tion Department of Jiangsu Province(05KJD110220)Xuzhou Normal University(05PYL02)the Foundation of"Liu Da Ren Cai"Plan