This paper analyzes a mathematical model of the photosynthetic carbon metabolism, which incorporates not only the Calvin-Benson cycle, but also another two important metabolic pathways: starch synthesis and photoresp...This paper analyzes a mathematical model of the photosynthetic carbon metabolism, which incorporates not only the Calvin-Benson cycle, but also another two important metabolic pathways: starch synthesis and photorespiratory pathway. Theoretically, the paper shows the existence of steady states, stability and instability of the steady states, the effects of CO2 concentration on steady states. Especially, a critical point is found, the system has only one steady state with C02 concentration in the left neighborhood of the critical point, but has two with C02 concentration in the right neighborhood. In addition, the paper also explores the influence of C02 concentration on the efficiency of photosynthesis. These theoretical results not only provide insight to the kinetic behaviors of the photosynthetic carbon metabolism, but also can be used to help improving the efficiency of photosynthesis in plants.展开更多
基金Supported by the National Natural Science Foundation of China(No.11071238)the Key Lab of Random Complex Structures and Data Science,CAS(No.2008DP173182)the National Center for Mathematics and interdisciplinary Sciences,CAS(N0.Y029184K51)
文摘This paper analyzes a mathematical model of the photosynthetic carbon metabolism, which incorporates not only the Calvin-Benson cycle, but also another two important metabolic pathways: starch synthesis and photorespiratory pathway. Theoretically, the paper shows the existence of steady states, stability and instability of the steady states, the effects of CO2 concentration on steady states. Especially, a critical point is found, the system has only one steady state with C02 concentration in the left neighborhood of the critical point, but has two with C02 concentration in the right neighborhood. In addition, the paper also explores the influence of C02 concentration on the efficiency of photosynthesis. These theoretical results not only provide insight to the kinetic behaviors of the photosynthetic carbon metabolism, but also can be used to help improving the efficiency of photosynthesis in plants.