Aims Snow cover occupies large percentage of land surface in Tibetan Plateau.Snow cover duration(SCD)during non-growing seasons plays a critical role in regulating alpine vegetation’s phenology by affecting the energ...Aims Snow cover occupies large percentage of land surface in Tibetan Plateau.Snow cover duration(SCD)during non-growing seasons plays a critical role in regulating alpine vegetation’s phenology by affecting the energy budgets of land surface and soil moisture con-ditions.Different period’s snow cover during non-growing season may have distinct effect on the vegetation’s phenology.Start of season(SOS)has been observed advanced under the ongoing cli-mate change in the plateau,but it still remains unclear how the SCD alters the SOS.This study attempts to answer the following questions:(i)What is the pattern of spatial and temporal variations for SCD and grassland SOS?(ii)Which period’s SCD plays a critical role in grassland’s SOS?Methods The remote sensing datasets from the Moderate Resolution Imaging Spectroradiometer(MODIS)were utilized to compute the SOS and SCD on the Tibetan Plateau over 2003-2015.The Asymmetric Gaussian function was applied to extract SOS.We also explored the spatial pattern and temporal variation of SOS and SCD.Then,by using linear correlation coefficients,we investigated the driving effects of different period’s non-growing season SCD on SOS.Important Findings The non-growing season SCD slightly decreased during 2003-2015,while SOS exhibited an overall advancing trend.Advanced trends in SOS were observed in the eastern plateau,and the delayed trends were mainly founded in western plateau.Snow cover area exhibited two separate peaks during autumn and late winter over the plateau.Extended SCD regions mainly distributed in middle-east of the plateau,while shrunken SCD distributed in other regions of the plateau.SCD of different seasons caused distinct effects on vegetation SOS.Lengthened autumn SCD advanced SOS over the eastern plateau.The slightly lengthened SCD postponed SOS over the western plateau.In the wet meadow regions,advanced SOS was positively associated with SCD during the entire non-growing season,whereas for the dry steppe,SCD over the preseason played a more dominant 展开更多
The socio-economic sector of West African countries is rain-fed agriculture driven. Information regarding the onset, cessation and duration of the rainy season is thus, very essential. In this paper, a comparison of t...The socio-economic sector of West African countries is rain-fed agriculture driven. Information regarding the onset, cessation and duration of the rainy season is thus, very essential. In this paper, a comparison of the onset, cessation and duration of the rainy season has been carried out using simulated rainfall data from the fourth generation Regional Climate Model (RegCM4) and rain gauge measurements from Ghana Meteorological Agency (GMet), covering a period of 1998 to 2012. Similar onset and cessation dates were seen in both the simulated and guage rainfall measurements for the various agro-ecological zones, resulting in similar duration of the rainy season. The average duration of the rainy season were less than 200 days for the savannah and coastal zones whereas the duration of the rainy season were beyond 200 days for the forest and transition zones. The bias of these comparisons was less than 30 days and the root mean square error (RMSE) values were less than 15 days for all stations, except Saltpond. The Pearson’s correlation (r) typically ranged between 0.4 and 0.8. However, negative correlations were observed for Tamale in the savannah zone, and the entire coastal zone. These findings are indications that RegCM4 has the potential to clearly simulate the movement of the rain belt, and thus, could fairly determine the onset, cessation and duration of the rainy season. The findings have significant contributions to effective water resource management and food security in Ghana, as the thriving of these sectors depend on the dynamics of the rainfall seasons.展开更多
基金This study was financially supported by the‘Strategic Priority Research Program(A)’of the Chinese Academy of Sciences(XDA20050102)a science and technology project of State Grid Corporation of China(SGxzzzlwzhbGCJS1700095)+1 种基金which hosted by the State Grid Corporation of China,National Natural Science Foundation of China(Young Scientists Fund 41801083,China National Funds for Distinguished Young Scientists 41725003 and Young Scientists Fund 41501103)the Postdoctoral Research Foundation of China(2018M631560).
文摘Aims Snow cover occupies large percentage of land surface in Tibetan Plateau.Snow cover duration(SCD)during non-growing seasons plays a critical role in regulating alpine vegetation’s phenology by affecting the energy budgets of land surface and soil moisture con-ditions.Different period’s snow cover during non-growing season may have distinct effect on the vegetation’s phenology.Start of season(SOS)has been observed advanced under the ongoing cli-mate change in the plateau,but it still remains unclear how the SCD alters the SOS.This study attempts to answer the following questions:(i)What is the pattern of spatial and temporal variations for SCD and grassland SOS?(ii)Which period’s SCD plays a critical role in grassland’s SOS?Methods The remote sensing datasets from the Moderate Resolution Imaging Spectroradiometer(MODIS)were utilized to compute the SOS and SCD on the Tibetan Plateau over 2003-2015.The Asymmetric Gaussian function was applied to extract SOS.We also explored the spatial pattern and temporal variation of SOS and SCD.Then,by using linear correlation coefficients,we investigated the driving effects of different period’s non-growing season SCD on SOS.Important Findings The non-growing season SCD slightly decreased during 2003-2015,while SOS exhibited an overall advancing trend.Advanced trends in SOS were observed in the eastern plateau,and the delayed trends were mainly founded in western plateau.Snow cover area exhibited two separate peaks during autumn and late winter over the plateau.Extended SCD regions mainly distributed in middle-east of the plateau,while shrunken SCD distributed in other regions of the plateau.SCD of different seasons caused distinct effects on vegetation SOS.Lengthened autumn SCD advanced SOS over the eastern plateau.The slightly lengthened SCD postponed SOS over the western plateau.In the wet meadow regions,advanced SOS was positively associated with SCD during the entire non-growing season,whereas for the dry steppe,SCD over the preseason played a more dominant
基金Supported by Nature Science Foundation of China(NSFC)(No.3050006030770286)+1 种基金China Post-doctor Foundation(No.2005038431)the “985 Research Projects” of the Central University for Nationalities of China(CUN985-03-03)
文摘The socio-economic sector of West African countries is rain-fed agriculture driven. Information regarding the onset, cessation and duration of the rainy season is thus, very essential. In this paper, a comparison of the onset, cessation and duration of the rainy season has been carried out using simulated rainfall data from the fourth generation Regional Climate Model (RegCM4) and rain gauge measurements from Ghana Meteorological Agency (GMet), covering a period of 1998 to 2012. Similar onset and cessation dates were seen in both the simulated and guage rainfall measurements for the various agro-ecological zones, resulting in similar duration of the rainy season. The average duration of the rainy season were less than 200 days for the savannah and coastal zones whereas the duration of the rainy season were beyond 200 days for the forest and transition zones. The bias of these comparisons was less than 30 days and the root mean square error (RMSE) values were less than 15 days for all stations, except Saltpond. The Pearson’s correlation (r) typically ranged between 0.4 and 0.8. However, negative correlations were observed for Tamale in the savannah zone, and the entire coastal zone. These findings are indications that RegCM4 has the potential to clearly simulate the movement of the rain belt, and thus, could fairly determine the onset, cessation and duration of the rainy season. The findings have significant contributions to effective water resource management and food security in Ghana, as the thriving of these sectors depend on the dynamics of the rainfall seasons.