概率潮流(probabilistic load flow,PLF)计算是电力系统稳态运行分析的重要工具。传统半不变量法概率潮流(PLF based on cumulant method,PLF-CM)要求各输入变量相互独立,这使其不能直接应用于输入变量具有相关性的场合。针对这一情况,...概率潮流(probabilistic load flow,PLF)计算是电力系统稳态运行分析的重要工具。传统半不变量法概率潮流(PLF based on cumulant method,PLF-CM)要求各输入变量相互独立,这使其不能直接应用于输入变量具有相关性的场合。针对这一情况,提出一种基于Cholesky分解的计及输入变量相关性的PLF-CM计算方法。同时,为解决一些输入变量的半不变量难以被常规数值方法求解的问题,提出基于蒙特卡罗抽样的方法,该方法利用输入变量的样本计算其半不变量。对改进的IEEE 14节点系统进行仿真计算,结果验证了所提方法的有效性、准确性和实用性。在此基础上利用所提方法分析了风速相关性对系统运行特性的影响。结果表明系统运行特性受风速相关性影响较大。展开更多
The natural gas system and electricity system are coupled tightly by gas turbines in an integrated energy system. The uncertainties of one system will not only threaten its own safe operation but also be likely to hav...The natural gas system and electricity system are coupled tightly by gas turbines in an integrated energy system. The uncertainties of one system will not only threaten its own safe operation but also be likely to have a significant impact on the other. Therefore, it is necessary to study the variation of state variables when random fluctuations emerge in the coupled system. In this paper, a multislack-bus model is proposed to calculate the power and gas flow in the coupled system. A unified probabilistic power and gas flow calculation, in which the cumulant method and Gram–Charlier expansion are applied, is first presented to obtain the distribution of state variables after considering the effects of uncertain factors. When the variation range of random factors is too large, a new method of piecewise linearization is put forward to achieve a better fitting precision of probability distribution. Compared to the Monte Carlo method, the proposed method can reduce computation time greatly while reaching a satisfactory accuracy.The validity of the proposed methods is verified in a coupled system that consists of a 15-node natural gas system and the IEEE case24 power system.展开更多
文摘概率潮流(probabilistic load flow,PLF)计算是电力系统稳态运行分析的重要工具。传统半不变量法概率潮流(PLF based on cumulant method,PLF-CM)要求各输入变量相互独立,这使其不能直接应用于输入变量具有相关性的场合。针对这一情况,提出一种基于Cholesky分解的计及输入变量相关性的PLF-CM计算方法。同时,为解决一些输入变量的半不变量难以被常规数值方法求解的问题,提出基于蒙特卡罗抽样的方法,该方法利用输入变量的样本计算其半不变量。对改进的IEEE 14节点系统进行仿真计算,结果验证了所提方法的有效性、准确性和实用性。在此基础上利用所提方法分析了风速相关性对系统运行特性的影响。结果表明系统运行特性受风速相关性影响较大。
基金supported by National Key Research and Development Program of China(No.2016YFB0901903)Key Program of National Natural Science Foundation of China(No.51637008)State Key Laboratory of Electrical Insulation and Power Equipment in Xi’an Jiaotong University(No.EIPE14106)
文摘The natural gas system and electricity system are coupled tightly by gas turbines in an integrated energy system. The uncertainties of one system will not only threaten its own safe operation but also be likely to have a significant impact on the other. Therefore, it is necessary to study the variation of state variables when random fluctuations emerge in the coupled system. In this paper, a multislack-bus model is proposed to calculate the power and gas flow in the coupled system. A unified probabilistic power and gas flow calculation, in which the cumulant method and Gram–Charlier expansion are applied, is first presented to obtain the distribution of state variables after considering the effects of uncertain factors. When the variation range of random factors is too large, a new method of piecewise linearization is put forward to achieve a better fitting precision of probability distribution. Compared to the Monte Carlo method, the proposed method can reduce computation time greatly while reaching a satisfactory accuracy.The validity of the proposed methods is verified in a coupled system that consists of a 15-node natural gas system and the IEEE case24 power system.