Maintenance of homeostasis is pivotal to all forms of life. In the case of plants, homeostasis is constantly threatened by the inability to escape environmental fluctuations, and therefore sensitive mechanisms must ha...Maintenance of homeostasis is pivotal to all forms of life. In the case of plants, homeostasis is constantly threatened by the inability to escape environmental fluctuations, and therefore sensitive mechanisms must have evolved to allow rapid perception of environmental cues and concomitant modification of growth and developmental patterns for adaptation and survival. Re-establishment of homeostasis in response to environmental perturbations requires reprog- ramming of metabolism and gene expression to shunt energy sources from growth-related biosynthetic processes to defense, acclimation, and, ultimately, adaptation. Failure to mount an initial 'emergency' response may result in nutrient deprivation and irreversible senescence and cell death. Early signaling events largely determine the capacity of plants to orchestrate a successful adaptive response. Early events, on the other hand, are likely to be shared by different conditions through the generation of similar signals and before more specific responses are elaborated. Recent studies lend credence to this hypothesis, underpinning the importance of a shared energy signal in the transcriptional response to various types of stress. Energy deficiency is associated with most environmental perturbations due to their direct or indirect deleterious impact on photosynthesis and/or respiration. Several systems are known to have evolved for monitoring the available resources and triggering metabolic, growth, and developmental decisions accordingly. In doing so, energy-sensing systems regulate gene expression at multiple levels to allow flexibility in the diversity and the kinetics of the stress response.展开更多
The eukaryotic transcription factor NF-Y consists of three subunits (A, B, and C), which are encoded in Ara- bidopsis thaliana in multigene families consisting of 10, 13, and 13 genes, respectively. In principle, al...The eukaryotic transcription factor NF-Y consists of three subunits (A, B, and C), which are encoded in Ara- bidopsis thaliana in multigene families consisting of 10, 13, and 13 genes, respectively. In principle, all potential combi- nations of the subunits are possible for the assembly of the heterotrimeric complex. We aimed at assessing the probability of each subunit to participate in the assembly of NF-Y. The evaluation of physical interactions among all members of the NF-Y subunit families indicate a strong requirement for NF-YB/NF-YC heterodimerization before the entire complex can be accomplished. By means of a modified yeast two-hybrid system assembly of all three subunits to a heterotrimeric complex was demonstrated. Using GFP fusion constructs, NF-YA and NF-YC localization in the nucleus was demonstrated, while NF- YB is solely imported into the nucleus as a NF-YC-associated heterodimer NF-YC. This piggyback transport of the two Arabidopsis subunits differs from the import of the NF-Y heterotrimer of heterotrophic organisms. Based on a peptide structure model of the histone-fold-motifs, disulfide bonding among intramolecular conserved cysteine residues of NF-YB, which is responsible for the redox-regulated assembly of NF-YB and NF-YC in human and Aspergillus nidulans, can be excluded for Arabidopsis NF-YB.展开更多
Light is one of the key environmental signals regulating plant growth and development.Therefore,understanding the mechanisms by which light controls plant development has long been of great interest to plant biologist...Light is one of the key environmental signals regulating plant growth and development.Therefore,understanding the mechanisms by which light controls plant development has long been of great interest to plant biologists.Traditional genetic and molecular approaches have successfully identified key regulatory factors in light signaling,but recent genomic studies have revealed massive reprogramming of plant transcriptomes by light,identified binding sites across the entire genome of several pivotal transcription factors in light signaling,and discovered the involvement of epigenetic regulation in light-regulated gene expression.This review summarizes the key genomic work conducted in the last decade which provides new insights into light control of plant development.展开更多
Pyropia haitanensis is an economically important mariculture crop in China and has a high research value for several life phenomena, for example environmental tolerance. To explore the mechanisms underlying these char...Pyropia haitanensis is an economically important mariculture crop in China and has a high research value for several life phenomena, for example environmental tolerance. To explore the mechanisms underlying these characteristics, gene expression has been investigated at the whole transcriptome level. Gene expression studies using quantitative real-time PCR should start by selecting an appropriate internal control gene; therefore, the absolute expression abundance of six housekeeping genes (18S rRNA (18S), ubiquitin-conju-ating enzyme (UBC), actin (ACT), β-tubulin (TUB), elongation factors 2 (EF2), and glyceraldehyde-3-phos- phate dehydrogenase (GAPDH) examined by the quantitative real-time PCR in samples corresponding to different strains, life-cycle stages and abiotic stress treatments. Their expression stabilities were assessed by the comparative cycle threshold (Ct) method and by two different software packages: geNorm and NormFinder. The most stable housekeeping gene is UBC and the least stable housekeeping is GADPH. Thus, it is proposed that the most appropriate internal control gene for expression analyses in P. haitanensis is UBC. The results pave the way for further gene expression analyses of different aspects of P. haitanensis biology including different strains, life-history stages and abiotic stress responses.展开更多
Along with the increasingly wide application of transgenic techniques, new stricter criteria have been raised for controlling the expression of exogenous genes. For these demands, a series of artificial control system...Along with the increasingly wide application of transgenic techniques, new stricter criteria have been raised for controlling the expression of exogenous genes. For these demands, a series of artificial control systems for gene expression have been developed and testified in recent years, which can control exogenous genes expression in exact time and certain level by administration of a specific drug or hormone. The successful construction of these systems offers a practicable method to control precise expression of exogenous gene in organisms, and raises the feasibility of wide application of gene therapy.展开更多
There is a lack of systematic research on the expression of internal control genes used for gene expression normalization in real-time reverse transcription polymerase chain reaction in spinal cord injury research.In ...There is a lack of systematic research on the expression of internal control genes used for gene expression normalization in real-time reverse transcription polymerase chain reaction in spinal cord injury research.In this study,we used rat models of spinal cord hemisection to analyze the expression stability of 13 commonly applied reference genes:Actb,Ankrd27,CypA,Gapdh,Hprt1,Mrpl10,Pgk1,Rictor,Rn18s,Tbp,Ubc,Ubxn11,and Ywhaz.Our results show that the expression of Ankrd27,Ubc,and Tbp were stable after spinal cord injury,while Actb was the most unstable internal control gene.Ankrd27,Ubc,Tbp,and Actb were consequently used to investigate the effects of internal control genes with differing stabilities on the normalization of target gene expression.Target gene expression levels and changes over time were similar when Ankrd27,Ubc,and Tbp were used as internal controls but different when Actb was used as an internal control.We recommend that Ankrd27,Ubc,and Tbp are used as internal control genes for real-time reverse transcription polymerase chain reaction in spinal cord injury research.This study was approved by the Administration Committee of Experimental Animals,Jiangsu Province,China(approval No.20180304-008)on March 4,2018.展开更多
文摘Maintenance of homeostasis is pivotal to all forms of life. In the case of plants, homeostasis is constantly threatened by the inability to escape environmental fluctuations, and therefore sensitive mechanisms must have evolved to allow rapid perception of environmental cues and concomitant modification of growth and developmental patterns for adaptation and survival. Re-establishment of homeostasis in response to environmental perturbations requires reprog- ramming of metabolism and gene expression to shunt energy sources from growth-related biosynthetic processes to defense, acclimation, and, ultimately, adaptation. Failure to mount an initial 'emergency' response may result in nutrient deprivation and irreversible senescence and cell death. Early signaling events largely determine the capacity of plants to orchestrate a successful adaptive response. Early events, on the other hand, are likely to be shared by different conditions through the generation of similar signals and before more specific responses are elaborated. Recent studies lend credence to this hypothesis, underpinning the importance of a shared energy signal in the transcriptional response to various types of stress. Energy deficiency is associated with most environmental perturbations due to their direct or indirect deleterious impact on photosynthesis and/or respiration. Several systems are known to have evolved for monitoring the available resources and triggering metabolic, growth, and developmental decisions accordingly. In doing so, energy-sensing systems regulate gene expression at multiple levels to allow flexibility in the diversity and the kinetics of the stress response.
文摘The eukaryotic transcription factor NF-Y consists of three subunits (A, B, and C), which are encoded in Ara- bidopsis thaliana in multigene families consisting of 10, 13, and 13 genes, respectively. In principle, all potential combi- nations of the subunits are possible for the assembly of the heterotrimeric complex. We aimed at assessing the probability of each subunit to participate in the assembly of NF-Y. The evaluation of physical interactions among all members of the NF-Y subunit families indicate a strong requirement for NF-YB/NF-YC heterodimerization before the entire complex can be accomplished. By means of a modified yeast two-hybrid system assembly of all three subunits to a heterotrimeric complex was demonstrated. Using GFP fusion constructs, NF-YA and NF-YC localization in the nucleus was demonstrated, while NF- YB is solely imported into the nucleus as a NF-YC-associated heterodimer NF-YC. This piggyback transport of the two Arabidopsis subunits differs from the import of the NF-Y heterotrimer of heterotrophic organisms. Based on a peptide structure model of the histone-fold-motifs, disulfide bonding among intramolecular conserved cysteine residues of NF-YB, which is responsible for the redox-regulated assembly of NF-YB and NF-YC in human and Aspergillus nidulans, can be excluded for Arabidopsis NF-YB.
基金the National Basic Research Program of China(973 Program)(Grant No.2012CB910900)National Institutes of Health of the USA(GM47850)+1 种基金the National Science Foundation(NSF)Plant Genome Program of the USA(DBI0922604)the Ministry of Agriculture of China(No.2010ZX08010-003).
文摘Light is one of the key environmental signals regulating plant growth and development.Therefore,understanding the mechanisms by which light controls plant development has long been of great interest to plant biologists.Traditional genetic and molecular approaches have successfully identified key regulatory factors in light signaling,but recent genomic studies have revealed massive reprogramming of plant transcriptomes by light,identified binding sites across the entire genome of several pivotal transcription factors in light signaling,and discovered the involvement of epigenetic regulation in light-regulated gene expression.This review summarizes the key genomic work conducted in the last decade which provides new insights into light control of plant development.
基金The National High Technology Research&Development Program of China under contract No.2012AA10A411the National Natural Science Foundation of China under contract Nos 41176151 and 41276177
文摘Pyropia haitanensis is an economically important mariculture crop in China and has a high research value for several life phenomena, for example environmental tolerance. To explore the mechanisms underlying these characteristics, gene expression has been investigated at the whole transcriptome level. Gene expression studies using quantitative real-time PCR should start by selecting an appropriate internal control gene; therefore, the absolute expression abundance of six housekeeping genes (18S rRNA (18S), ubiquitin-conju-ating enzyme (UBC), actin (ACT), β-tubulin (TUB), elongation factors 2 (EF2), and glyceraldehyde-3-phos- phate dehydrogenase (GAPDH) examined by the quantitative real-time PCR in samples corresponding to different strains, life-cycle stages and abiotic stress treatments. Their expression stabilities were assessed by the comparative cycle threshold (Ct) method and by two different software packages: geNorm and NormFinder. The most stable housekeeping gene is UBC and the least stable housekeeping is GADPH. Thus, it is proposed that the most appropriate internal control gene for expression analyses in P. haitanensis is UBC. The results pave the way for further gene expression analyses of different aspects of P. haitanensis biology including different strains, life-history stages and abiotic stress responses.
文摘Along with the increasingly wide application of transgenic techniques, new stricter criteria have been raised for controlling the expression of exogenous genes. For these demands, a series of artificial control systems for gene expression have been developed and testified in recent years, which can control exogenous genes expression in exact time and certain level by administration of a specific drug or hormone. The successful construction of these systems offers a practicable method to control precise expression of exogenous gene in organisms, and raises the feasibility of wide application of gene therapy.
基金the National Natural Science Foundation of China,No.81901257(to YXW)the Natural Science Foundation of Jiangsu Province of China,No.BK20180951(to YXW)+1 种基金Postgraduate Research and Practice Innovation Program of Jiangsu Province of China,No.KYCX20_2818(to WL)and Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD,to Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education).
文摘There is a lack of systematic research on the expression of internal control genes used for gene expression normalization in real-time reverse transcription polymerase chain reaction in spinal cord injury research.In this study,we used rat models of spinal cord hemisection to analyze the expression stability of 13 commonly applied reference genes:Actb,Ankrd27,CypA,Gapdh,Hprt1,Mrpl10,Pgk1,Rictor,Rn18s,Tbp,Ubc,Ubxn11,and Ywhaz.Our results show that the expression of Ankrd27,Ubc,and Tbp were stable after spinal cord injury,while Actb was the most unstable internal control gene.Ankrd27,Ubc,Tbp,and Actb were consequently used to investigate the effects of internal control genes with differing stabilities on the normalization of target gene expression.Target gene expression levels and changes over time were similar when Ankrd27,Ubc,and Tbp were used as internal controls but different when Actb was used as an internal control.We recommend that Ankrd27,Ubc,and Tbp are used as internal control genes for real-time reverse transcription polymerase chain reaction in spinal cord injury research.This study was approved by the Administration Committee of Experimental Animals,Jiangsu Province,China(approval No.20180304-008)on March 4,2018.