Objectives: To challenge the expiry dates of low concentration high purity mycotoxins standards. Literature Review: Aflatoxins (AFs) and Ochratoxin A (OTA) are persistent mycotoxins with adverse effects on humans. Myc...Objectives: To challenge the expiry dates of low concentration high purity mycotoxins standards. Literature Review: Aflatoxins (AFs) and Ochratoxin A (OTA) are persistent mycotoxins with adverse effects on humans. Mycotoxins standards are purchased to determine mycotoxin concentrations in food and may be stocked in some laboratories beyond expiry dates causing laboratories financial losses. Methods: Certified mycotoxins standards were purchased over the years from the same supplier at times and at other times from two different suppliers for quality control purposes. For AFs, six chromatographic runs for each of the mycotoxins standards were done to compare the difference among these standards having the following expiry dates (2008, 2012, 2013 and 2018). AFs standards purchased/obtained from two different suppliers in 2016 and expiring in 2018 were also compared. For OTA, the difference of concentration obtained between two years (2010 and 2018) was tested. All samples were run on a HPLC equipped with a fluorescence detector. Linearity of calibration curves and the points of lowest detection were determined for AFs components and for OTA from the unexpired mycotoxins standards. Results: At a 0.05 significance level and using non parametric tests, the statistical test revealed a p of 0.166, 0.153, 0.358 and 0.03 for B1, G1, B2 and G2 respectively among years for standards from same supplier and 0.037, 0.109, 0.182 and 0.182 for B1, G1, B2 and G2 respectively for unexpired standards from two different suppliers. For OTA, a p of 0.109 was obtained for standards of different expiry dates purchased from different suppliers. Conclusion: High purity low concentration mycotoxin standards purchased a decade ago (i.e. expired) did not differ from those purchased this current year (still valid). Hence, the expiry date can be renewed reducing the laboratories expenses. Manufacturers are urged to reconsider the expiry dates.展开更多
DNA analysis is the core of biotechnology applied in petroleum resources and engineering. Traditionally accurate determination of DNA purity and concentration by spectrometer is the first and critical step for downstr...DNA analysis is the core of biotechnology applied in petroleum resources and engineering. Traditionally accurate determination of DNA purity and concentration by spectrometer is the first and critical step for downstream molecular biology research. In this study, three different spectrophotometry methods, BPM, NDTT and NPMTTZ were compared for their performance in determining DNA concentration and purity in 32 oil samples, and molecule methods like quantitative real-time PCR (qPCR) and high-throughput sequence were also performed to help assess the accuracy of the three methods in determining DNA concentration and purity. For ordinary heavy oil (OHO), extra heavy oil (EHO) and super heavy oil (SHO), the characteristics of high viscosity (η), density (ρ) and resin plus asphaltene content will affect the DNA extraction and UV determination. The DNA concentration was decreased as density increased: OHO (11.46 ± 18.34 ng/μL), EHO (6.68 ± 9.67 ng/μL) and SHO (6.20 ± 7.83 ng/μL), and the DNA purity was on the reverse: OHO (1.31 ± 0.27), EHO (1.54 ± 0.20), and SHO (1.83 ± 0.32). The results suggest that spectrophotometry such as BPM and NPMTTZ are qualitatively favorite methods as the quick non-consumable methods in determining DNA concentration and purity of medium oil and heavy oil.展开更多
文摘Objectives: To challenge the expiry dates of low concentration high purity mycotoxins standards. Literature Review: Aflatoxins (AFs) and Ochratoxin A (OTA) are persistent mycotoxins with adverse effects on humans. Mycotoxins standards are purchased to determine mycotoxin concentrations in food and may be stocked in some laboratories beyond expiry dates causing laboratories financial losses. Methods: Certified mycotoxins standards were purchased over the years from the same supplier at times and at other times from two different suppliers for quality control purposes. For AFs, six chromatographic runs for each of the mycotoxins standards were done to compare the difference among these standards having the following expiry dates (2008, 2012, 2013 and 2018). AFs standards purchased/obtained from two different suppliers in 2016 and expiring in 2018 were also compared. For OTA, the difference of concentration obtained between two years (2010 and 2018) was tested. All samples were run on a HPLC equipped with a fluorescence detector. Linearity of calibration curves and the points of lowest detection were determined for AFs components and for OTA from the unexpired mycotoxins standards. Results: At a 0.05 significance level and using non parametric tests, the statistical test revealed a p of 0.166, 0.153, 0.358 and 0.03 for B1, G1, B2 and G2 respectively among years for standards from same supplier and 0.037, 0.109, 0.182 and 0.182 for B1, G1, B2 and G2 respectively for unexpired standards from two different suppliers. For OTA, a p of 0.109 was obtained for standards of different expiry dates purchased from different suppliers. Conclusion: High purity low concentration mycotoxin standards purchased a decade ago (i.e. expired) did not differ from those purchased this current year (still valid). Hence, the expiry date can be renewed reducing the laboratories expenses. Manufacturers are urged to reconsider the expiry dates.
基金supported by grants from the PetroChina-CUP Major Strategic Cooperation Projects(ZLZX2020010805,ZLZX2020020405)National Natural Science Foundation of China(41373086)+3 种基金National Science and Technology Major Project(No.2016ZX05050011,2016ZX05040002)Beijing Nova Program and Leading Talent Culturing Cooperative Projects(No.Z161100004916033)Beijing Higher Education Young Elite Teacher Project(No.YETP0670)Outstanding Young Excellent Teachers Foundation of China University of Petroleum(Beijing)(KYJJ2012-01-10).
文摘DNA analysis is the core of biotechnology applied in petroleum resources and engineering. Traditionally accurate determination of DNA purity and concentration by spectrometer is the first and critical step for downstream molecular biology research. In this study, three different spectrophotometry methods, BPM, NDTT and NPMTTZ were compared for their performance in determining DNA concentration and purity in 32 oil samples, and molecule methods like quantitative real-time PCR (qPCR) and high-throughput sequence were also performed to help assess the accuracy of the three methods in determining DNA concentration and purity. For ordinary heavy oil (OHO), extra heavy oil (EHO) and super heavy oil (SHO), the characteristics of high viscosity (η), density (ρ) and resin plus asphaltene content will affect the DNA extraction and UV determination. The DNA concentration was decreased as density increased: OHO (11.46 ± 18.34 ng/μL), EHO (6.68 ± 9.67 ng/μL) and SHO (6.20 ± 7.83 ng/μL), and the DNA purity was on the reverse: OHO (1.31 ± 0.27), EHO (1.54 ± 0.20), and SHO (1.83 ± 0.32). The results suggest that spectrophotometry such as BPM and NPMTTZ are qualitatively favorite methods as the quick non-consumable methods in determining DNA concentration and purity of medium oil and heavy oil.