This paper discusses the order-preserving convergence for spectral approximation of the self-adjoint completely continuous operator T.Under the condition that the approximate operator Th converges to T in norm,it is p...This paper discusses the order-preserving convergence for spectral approximation of the self-adjoint completely continuous operator T.Under the condition that the approximate operator Th converges to T in norm,it is proven that the k-th eigenvalue of Th converges to the k-th eigenvalue of T.(We sorted the positive eigenvalues in decreasing order and negative eigenvalues in increasing order.) Then we apply this result to conforming elements,nonconforming elements and mixed elements of self-adjoint elliptic differential operators eigenvalue problems,and prove that the k-th approximate eigenvalue obtained by these methods converges to the k-th exact eigenvalue.展开更多
We discuss a transfer line consisting of a reliable machine, an unreliable machine and a storage buffer. This transfer line can be described by a group of partial differential equations with integral boundary conditio...We discuss a transfer line consisting of a reliable machine, an unreliable machine and a storage buffer. This transfer line can be described by a group of partial differential equations with integral boundary conditions. First we show that the operator corresponding to these equations generates a positive contraction C0-semigroup T(t), and prove that T(t) is a quasi-compact operator. Next we verify that 0 is an eigenvalue of this operator and its adjoint operator with geometric multiplicity one. Last, by using the above results we obtain that the time-dependent solution of these equations converges strongly to their steady-state solution.展开更多
Designing a controller for the docking maneuver in Probe-Drogue Refueling(PDR) is an important but challenging task, due to the complex system model and the high precision requirement.In order to overcome the disadvan...Designing a controller for the docking maneuver in Probe-Drogue Refueling(PDR) is an important but challenging task, due to the complex system model and the high precision requirement.In order to overcome the disadvantage of only feedback control, a feedforward control scheme known as Iterative Learning Control(ILC) is adopted in this paper.First, Additive State Decomposition(ASD) is used to address the tight coupling of input saturation, nonlinearity and the property of Non Minimum Phase(NMP) by separating these features into two subsystems(a primary system and a secondary system).After system decomposition, an adjoint-type ILC is applied to the Linear Time-Invariant(LTI) primary system with NMP to achieve entire output trajectory tracking, whereas state feedback is used to stabilize the secondary system with input saturation.The two controllers designed for the two subsystems can be combined to achieve the original control goal of the PDR system.Furthermore, to compensate for the receiverindependent uncertainties, a correction action is proposed by using the terminal docking error,which can lead to a smaller docking error at the docking moment.Simulation tests have been carried out to demonstrate the performance of the proposed control method, which has some advantages over the traditional derivative-type ILC and adjoint-type ILC in the docking control of PDR.展开更多
When D: E →F is a linear differential operator of order q between the sections of vector bundles over a manifold X of dimension n, it is defined by a bundle map Φ: J<sub>q</sub>(E) &ra...When D: E →F is a linear differential operator of order q between the sections of vector bundles over a manifold X of dimension n, it is defined by a bundle map Φ: J<sub>q</sub>(E) →F=F<sub>0</sub> that may depend, explicitly or implicitly, on constant parameters a, b, c, ... . A “direct problem” is to find the generating compatibility conditions (CC) in the form of an operator D<sub>1</sub>: F<sub>0</sub> →F<sub>1</sub>. When D is involutive, that is when the corresponding system R<sub>q</sub> = ker (Φ) is involutive, this procedure provides successive first order involutive operators D<sub>1</sub>, ..., D<sub>n</sub>. Though D<sub>1</sub> οD = 0 implies ad (D) οad(D<sub>1</sub>) = 0 by taking the respective adjoint operators, then ad (D) may not generate the CC of ad (D<sub>1</sub>) and measuring such “gaps” led to introduce extension modules in differential homological algebra. They may also depend on the parameters and such a situation is well known in ordinary or partial control theory. When R<sub>q</sub> is not involutive, a standard prolongation/projection (PP) procedure allows in general to find integers r, s such that the image of the projection at order q+r of the prolongation is involutive but it may highly depend on the parameters. However, sometimes the resulting system no longer depends on the parameters and the extension modules do not depend on the parameters because it is known that they do not depend on the differential sequence used for their definition. The purpose of this paper is to study the above problems for the Kerr (m, a), Schwarzschild (m, 0) and Minkowski (0, 0) parameters while computing the dimensions of the inclusions for the respective Killing operators. Other striking motivating examples are also presented.展开更多
Assume that L is a non-negative self-adjoint operator on L^(2)(ℝ^(n))with its heat kernels satisfying the so-called Gaussian upper bound estimate and that X is a ball quasi-Banach function space onℝ^(n) satisfying som...Assume that L is a non-negative self-adjoint operator on L^(2)(ℝ^(n))with its heat kernels satisfying the so-called Gaussian upper bound estimate and that X is a ball quasi-Banach function space onℝ^(n) satisfying some mild assumptions.Let HX,L(ℝ^(n))be the Hardy space associated with both X and L,which is defined by the Lusin area function related to the semigroup generated by L.In this article,the authors establish various maximal function characterizations of the Hardy space HX,L(ℝ^(n))and then apply these characterizations to obtain the solvability of the related Cauchy problem.These results have a wide range of generality and,in particular,the specific spaces X to which these results can be applied include the weighted space,the variable space,the mixed-norm space,the Orlicz space,the Orlicz-slice space,and the Morrey space.Moreover,the obtained maximal function characterizations of the mixed-norm Hardy space,the Orlicz-slice Hardy space,and the Morrey-Hardy space associated with L are completely new.展开更多
A new type of Galerkin finite element for first-order initial-value problems(IVPs)is proposed.Both the trial and test functions employ the same m-degreed polynomials.The adjoint equation is used to eliminate one degre...A new type of Galerkin finite element for first-order initial-value problems(IVPs)is proposed.Both the trial and test functions employ the same m-degreed polynomials.The adjoint equation is used to eliminate one degree of freedom(DOF)from the test function,and then the so-called condensed test function and its consequent condensed Galerkin element are constructed.It is mathematically proved and numerically verified that the condensed element produces the super-convergent nodal solutions of O(h^(2m+2)),which is equivalent to the order of accuracy by the conventional element of degree m+1.Some related properties are addressed,and typical numerical examples of both linear and nonlinear IVPs of both a single equation and a system of equations are presented to show the validity and effectiveness of the proposed element.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 10761003)Guizhou Province Scientific Research for Senior Personnels
文摘This paper discusses the order-preserving convergence for spectral approximation of the self-adjoint completely continuous operator T.Under the condition that the approximate operator Th converges to T in norm,it is proven that the k-th eigenvalue of Th converges to the k-th eigenvalue of T.(We sorted the positive eigenvalues in decreasing order and negative eigenvalues in increasing order.) Then we apply this result to conforming elements,nonconforming elements and mixed elements of self-adjoint elliptic differential operators eigenvalue problems,and prove that the k-th approximate eigenvalue obtained by these methods converges to the k-th exact eigenvalue.
基金This research is supported by Excellent Youth Reward Foundation of the Higher Education Institution of Xinjiang (No: XJEDU2004E05) the Major Project of the Ministry of Education of China(No. 205180).
文摘We discuss a transfer line consisting of a reliable machine, an unreliable machine and a storage buffer. This transfer line can be described by a group of partial differential equations with integral boundary conditions. First we show that the operator corresponding to these equations generates a positive contraction C0-semigroup T(t), and prove that T(t) is a quasi-compact operator. Next we verify that 0 is an eigenvalue of this operator and its adjoint operator with geometric multiplicity one. Last, by using the above results we obtain that the time-dependent solution of these equations converges strongly to their steady-state solution.
基金supported by the National Natural Science Foundation of China(No.61473012)。
文摘Designing a controller for the docking maneuver in Probe-Drogue Refueling(PDR) is an important but challenging task, due to the complex system model and the high precision requirement.In order to overcome the disadvantage of only feedback control, a feedforward control scheme known as Iterative Learning Control(ILC) is adopted in this paper.First, Additive State Decomposition(ASD) is used to address the tight coupling of input saturation, nonlinearity and the property of Non Minimum Phase(NMP) by separating these features into two subsystems(a primary system and a secondary system).After system decomposition, an adjoint-type ILC is applied to the Linear Time-Invariant(LTI) primary system with NMP to achieve entire output trajectory tracking, whereas state feedback is used to stabilize the secondary system with input saturation.The two controllers designed for the two subsystems can be combined to achieve the original control goal of the PDR system.Furthermore, to compensate for the receiverindependent uncertainties, a correction action is proposed by using the terminal docking error,which can lead to a smaller docking error at the docking moment.Simulation tests have been carried out to demonstrate the performance of the proposed control method, which has some advantages over the traditional derivative-type ILC and adjoint-type ILC in the docking control of PDR.
文摘When D: E →F is a linear differential operator of order q between the sections of vector bundles over a manifold X of dimension n, it is defined by a bundle map Φ: J<sub>q</sub>(E) →F=F<sub>0</sub> that may depend, explicitly or implicitly, on constant parameters a, b, c, ... . A “direct problem” is to find the generating compatibility conditions (CC) in the form of an operator D<sub>1</sub>: F<sub>0</sub> →F<sub>1</sub>. When D is involutive, that is when the corresponding system R<sub>q</sub> = ker (Φ) is involutive, this procedure provides successive first order involutive operators D<sub>1</sub>, ..., D<sub>n</sub>. Though D<sub>1</sub> οD = 0 implies ad (D) οad(D<sub>1</sub>) = 0 by taking the respective adjoint operators, then ad (D) may not generate the CC of ad (D<sub>1</sub>) and measuring such “gaps” led to introduce extension modules in differential homological algebra. They may also depend on the parameters and such a situation is well known in ordinary or partial control theory. When R<sub>q</sub> is not involutive, a standard prolongation/projection (PP) procedure allows in general to find integers r, s such that the image of the projection at order q+r of the prolongation is involutive but it may highly depend on the parameters. However, sometimes the resulting system no longer depends on the parameters and the extension modules do not depend on the parameters because it is known that they do not depend on the differential sequence used for their definition. The purpose of this paper is to study the above problems for the Kerr (m, a), Schwarzschild (m, 0) and Minkowski (0, 0) parameters while computing the dimensions of the inclusions for the respective Killing operators. Other striking motivating examples are also presented.
基金supported by the National Key Research and Development Program of China(2020YFA0712900)the National Natural Science Foundation of China(12371093,12071197,12122102 and 12071431)+2 种基金the Key Project of Gansu Provincial National Science Foundation(23JRRA1022)the Fundamental Research Funds for the Central Universities(2233300008 and lzujbky-2021-ey18)the Innovative Groups of Basic Research in Gansu Province(22JR5RA391).
文摘Assume that L is a non-negative self-adjoint operator on L^(2)(ℝ^(n))with its heat kernels satisfying the so-called Gaussian upper bound estimate and that X is a ball quasi-Banach function space onℝ^(n) satisfying some mild assumptions.Let HX,L(ℝ^(n))be the Hardy space associated with both X and L,which is defined by the Lusin area function related to the semigroup generated by L.In this article,the authors establish various maximal function characterizations of the Hardy space HX,L(ℝ^(n))and then apply these characterizations to obtain the solvability of the related Cauchy problem.These results have a wide range of generality and,in particular,the specific spaces X to which these results can be applied include the weighted space,the variable space,the mixed-norm space,the Orlicz space,the Orlicz-slice space,and the Morrey space.Moreover,the obtained maximal function characterizations of the mixed-norm Hardy space,the Orlicz-slice Hardy space,and the Morrey-Hardy space associated with L are completely new.
基金The Major Project of the Ministry of Education of China (205180)Excellent Youth Reward Foundation of the Higher Education Institution of Xinjiang (XJEDU2004E05) Xinjiang University Science Foundation
基金Project supported by the National Natural Science Foundation of China(Nos.51878383 and51378293)。
文摘A new type of Galerkin finite element for first-order initial-value problems(IVPs)is proposed.Both the trial and test functions employ the same m-degreed polynomials.The adjoint equation is used to eliminate one degree of freedom(DOF)from the test function,and then the so-called condensed test function and its consequent condensed Galerkin element are constructed.It is mathematically proved and numerically verified that the condensed element produces the super-convergent nodal solutions of O(h^(2m+2)),which is equivalent to the order of accuracy by the conventional element of degree m+1.Some related properties are addressed,and typical numerical examples of both linear and nonlinear IVPs of both a single equation and a system of equations are presented to show the validity and effectiveness of the proposed element.