Five samples of muscovite from mylonites of the earlier Tanlu ductile shear zone on the eastern margin of the Dabie Mountains yield 40Ar/39Ar ages ranging from 178 Ma to 196 Ma. Three of them have reliable plateau age...Five samples of muscovite from mylonites of the earlier Tanlu ductile shear zone on the eastern margin of the Dabie Mountains yield 40Ar/39Ar ages ranging from 178 Ma to 196 Ma. Three of them have reliable plateau ages of 188.7±0.7 Ma, 189.7±0.6 Ma and 192.5±0.7 Ma respectively, which indicates a syn-orogenic, sinistral strike-slip thermal event. This displacement movement derived from the continent-continent collision of the North and South China blocks took place in the Early Jurassic and after uplifting of high-pressure to ultrahigh-pressure slabs to the mid-crust. It is suggested that during the collision the Tanlu fault zone was an intracontinental transform fault caused by differential subduction speeds. The 40Ar/39Ar ages of mylonite whole-rock and muscovite from the later Tanlu ductile shear zone suggest another sinistral strike-slip cooling event at 128 Ma. During this strike-slip faulting, large-scale intrusion and doming uplift occurred in the eastern part of the Dabie orogenic belt. Data of K-feldspar 40Ar/39Ar MDD and apatite fission-track analysis from metamorphic rocks indicate two high-speed cooling events experienced by the Tanlu fault zone, which took place at 90 Ma and 45-58 Ma respectively. They correspond respectively to two phases of extensional activities in the Late Cretaceous and Eogene as well as development of the Qianshan fault-controlled basin to the east of the Tanlu fault zone. The cooling times recorded by K-feldspar and apatite show that the uplifting in the Dabie orogenic belt occured earlier than that on the eastern margin occupied by the Tanlu fault zone. The above phenomena suggest that the uplifting of the Dabie orogenic belt during the Late Cretaceous to Eogene was not controlled by the Tanlu normal faulting, but as a result of the lithospheric delamination.展开更多
The finite-difference inversion method and RayInvr technique had been employed to inter- pret the wide-angle seismic reflection/refraction data of the Fuliji-Fengxian deep seismic sounding (DSS) profile in Lower Yangt...The finite-difference inversion method and RayInvr technique had been employed to inter- pret the wide-angle seismic reflection/refraction data of the Fuliji-Fengxian deep seismic sounding (DSS) profile in Lower Yangtze region, hence the velocity structure was acquired and conclusions were sum- marized as follows: (1) The velocity model along this profile can be divided into three large layers vertically (upper, middle and lower crusts) and six blocks laterally, and this velocity distribution agrees with the feature of stable platform. (2) The depth of Moho discontinuity is 30―36 km. The thickness of the upper crust is 10.5―13.0 km, where the lateral velocity varies strongly, and the velocity increases to 6.2 km/s?1 at bottom. Besides, the velocity distribu- tions in the bottom layer of middle crust and lower crust have an apparent inhomogeneity. The velocity in upper layer of middle crust, lower layer of middle crust, lower crust and uppermost mantle is 5.9―6.2, 6.3―6.4, 6.6―7.0 and 8.06―8.29 km/s?1, respec- tively. (3) On two sides of the Tanlu fault belt (TFB), the mid-crustal velocity structure is quite different, nevertheless no apparent discrimination in velocity distribution and boundary topography exhibits in lower crust, hence it is inferred that the Jiashan segment of TFB had probably cut through whole crust in the Mesozoic, and the fault behaviour in lower crust had disappeared due to the low viscosity produced by the orogenic extension or crustal bal- ance, while the fault features in the rigid middle-uppercrust have been preserved up to the present. (4) The moderate earthquakes with Ms > 5.0 nearby Zhen- jiang are related to the deep faults extending into the lower crust, and the earthquakes were probably induced by the energy been transferred from man- tle lithosphere to upper-mid crust along the deep faults, and aggregated at some preferable tectonic positions.展开更多
The west block of the middle belt of TanLu fault belt is one of the areas where volcanic landforms are mainly distributed. This paper divides the volcanic landforms into four grades according to formation, morphology,...The west block of the middle belt of TanLu fault belt is one of the areas where volcanic landforms are mainly distributed. This paper divides the volcanic landforms into four grades according to formation, morphology, and ingredient of matter. Lava cones are divided into two types based on the force of top-support and the fluid form of magma: the arc-projecting type and spring-spilling type. Furthermore, the courses of development of volcanic landforms are divided into three stages according to the form and strength of volcanic activities.展开更多
基金The research was supported by the National Natural Science Foundation of China(Grant 40272094).
文摘Five samples of muscovite from mylonites of the earlier Tanlu ductile shear zone on the eastern margin of the Dabie Mountains yield 40Ar/39Ar ages ranging from 178 Ma to 196 Ma. Three of them have reliable plateau ages of 188.7±0.7 Ma, 189.7±0.6 Ma and 192.5±0.7 Ma respectively, which indicates a syn-orogenic, sinistral strike-slip thermal event. This displacement movement derived from the continent-continent collision of the North and South China blocks took place in the Early Jurassic and after uplifting of high-pressure to ultrahigh-pressure slabs to the mid-crust. It is suggested that during the collision the Tanlu fault zone was an intracontinental transform fault caused by differential subduction speeds. The 40Ar/39Ar ages of mylonite whole-rock and muscovite from the later Tanlu ductile shear zone suggest another sinistral strike-slip cooling event at 128 Ma. During this strike-slip faulting, large-scale intrusion and doming uplift occurred in the eastern part of the Dabie orogenic belt. Data of K-feldspar 40Ar/39Ar MDD and apatite fission-track analysis from metamorphic rocks indicate two high-speed cooling events experienced by the Tanlu fault zone, which took place at 90 Ma and 45-58 Ma respectively. They correspond respectively to two phases of extensional activities in the Late Cretaceous and Eogene as well as development of the Qianshan fault-controlled basin to the east of the Tanlu fault zone. The cooling times recorded by K-feldspar and apatite show that the uplifting in the Dabie orogenic belt occured earlier than that on the eastern margin occupied by the Tanlu fault zone. The above phenomena suggest that the uplifting of the Dabie orogenic belt during the Late Cretaceous to Eogene was not controlled by the Tanlu normal faulting, but as a result of the lithospheric delamination.
基金This work was jointly supported by the National Natural Science Foundation of China(Grant No.40304006)the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No.KZCX2-109)the National Basic Research Project of the Science and Technology Ministry of China(Grant No.2002CB412604).
文摘The finite-difference inversion method and RayInvr technique had been employed to inter- pret the wide-angle seismic reflection/refraction data of the Fuliji-Fengxian deep seismic sounding (DSS) profile in Lower Yangtze region, hence the velocity structure was acquired and conclusions were sum- marized as follows: (1) The velocity model along this profile can be divided into three large layers vertically (upper, middle and lower crusts) and six blocks laterally, and this velocity distribution agrees with the feature of stable platform. (2) The depth of Moho discontinuity is 30―36 km. The thickness of the upper crust is 10.5―13.0 km, where the lateral velocity varies strongly, and the velocity increases to 6.2 km/s?1 at bottom. Besides, the velocity distribu- tions in the bottom layer of middle crust and lower crust have an apparent inhomogeneity. The velocity in upper layer of middle crust, lower layer of middle crust, lower crust and uppermost mantle is 5.9―6.2, 6.3―6.4, 6.6―7.0 and 8.06―8.29 km/s?1, respec- tively. (3) On two sides of the Tanlu fault belt (TFB), the mid-crustal velocity structure is quite different, nevertheless no apparent discrimination in velocity distribution and boundary topography exhibits in lower crust, hence it is inferred that the Jiashan segment of TFB had probably cut through whole crust in the Mesozoic, and the fault behaviour in lower crust had disappeared due to the low viscosity produced by the orogenic extension or crustal bal- ance, while the fault features in the rigid middle-uppercrust have been preserved up to the present. (4) The moderate earthquakes with Ms > 5.0 nearby Zhen- jiang are related to the deep faults extending into the lower crust, and the earthquakes were probably induced by the energy been transferred from man- tle lithosphere to upper-mid crust along the deep faults, and aggregated at some preferable tectonic positions.
文摘The west block of the middle belt of TanLu fault belt is one of the areas where volcanic landforms are mainly distributed. This paper divides the volcanic landforms into four grades according to formation, morphology, and ingredient of matter. Lava cones are divided into two types based on the force of top-support and the fluid form of magma: the arc-projecting type and spring-spilling type. Furthermore, the courses of development of volcanic landforms are divided into three stages according to the form and strength of volcanic activities.