Characteristics of planar velocity distribution of viscous debris flow were analyzed using the measured data at Jiangjia Ravine, Yunnan, China. The velocity data were measured through using two radar velocimeters. The...Characteristics of planar velocity distribution of viscous debris flow were analyzed using the measured data at Jiangjia Ravine, Yunnan, China. The velocity data were measured through using two radar velocimeters. The cross-sectional mean velocities were calculated and used to examine Kang et al's (2004) relationship, which was established for converting the flow velocity at river centerline measured by a radar velocimeter into the mean velocity based on the stop-watch method. The velocity coefficient, K, defined by the ratio of the mean velocity to the maximum velocity, ranges from 0.2 to 0.6. Kang et al's (2004) relationship was found being inapplicable to flows with K smaller than 0.43. This paper contributes to show the complexity of the planar velocity distribution of viscous debris flows and the applicability of Kang et al's relationship.展开更多
The structural features of soil in debris flow-triggering region play an important role in the formation and evolution of debris flow. In this paper, a case study on the fractal of soil particle-size distribution (PS...The structural features of soil in debris flow-triggering region play an important role in the formation and evolution of debris flow. In this paper, a case study on the fractal of soil particle-size distribution (PSDFs) and pore-solid (PSFs) in Jiangjia Ravine was conducted. The results revealed that the soil in Jiangjia Ravine had significant fractal features and its PSDF and PSF had the same variation trend despite different type of soils in debris flow-triggering region: residual soil (RS) 〉 debris flow deposit (DFD)~clinosol (CL), their fractal dimension of PSDFs are respectively between 2.62 and 2.96, 2.52 and 2.68, 2.37 and 2.52; and the fractal dimension of PSFs are respectively between 2. 75 and 2.95, 2. 57 and 2. 72, 2.59 and 2.64. The fractal dimension of soil reflected its complexity as a self-organizing system and was closely related to the evolution of soil in debris flow- triggering region.展开更多
基金the National Natural Science Foundation of China (50221903, 50309007)
文摘Characteristics of planar velocity distribution of viscous debris flow were analyzed using the measured data at Jiangjia Ravine, Yunnan, China. The velocity data were measured through using two radar velocimeters. The cross-sectional mean velocities were calculated and used to examine Kang et al's (2004) relationship, which was established for converting the flow velocity at river centerline measured by a radar velocimeter into the mean velocity based on the stop-watch method. The velocity coefficient, K, defined by the ratio of the mean velocity to the maximum velocity, ranges from 0.2 to 0.6. Kang et al's (2004) relationship was found being inapplicable to flows with K smaller than 0.43. This paper contributes to show the complexity of the planar velocity distribution of viscous debris flows and the applicability of Kang et al's relationship.
文摘The structural features of soil in debris flow-triggering region play an important role in the formation and evolution of debris flow. In this paper, a case study on the fractal of soil particle-size distribution (PSDFs) and pore-solid (PSFs) in Jiangjia Ravine was conducted. The results revealed that the soil in Jiangjia Ravine had significant fractal features and its PSDF and PSF had the same variation trend despite different type of soils in debris flow-triggering region: residual soil (RS) 〉 debris flow deposit (DFD)~clinosol (CL), their fractal dimension of PSDFs are respectively between 2.62 and 2.96, 2.52 and 2.68, 2.37 and 2.52; and the fractal dimension of PSFs are respectively between 2. 75 and 2.95, 2. 57 and 2. 72, 2.59 and 2.64. The fractal dimension of soil reflected its complexity as a self-organizing system and was closely related to the evolution of soil in debris flow- triggering region.