Based on the reliability and mechanism kinematic accuracy theories, we propose a general methodology for system reliability analysis of kinematic performance of planar mechanisms. The loop closure equations are used t...Based on the reliability and mechanism kinematic accuracy theories, we propose a general methodology for system reliability analysis of kinematic performance of planar mechanisms. The loop closure equations are used to estimate the kinematic performance errors of planar mechanisms. Reliability and system reliability theories are introduced to develop the limit state functions (LSF) for failure of kinematic performance qualities. The statistical fourth moment method and the Edgeworth series technique are used on system reliability analysis for kinematic performance of planar mechanisms, which relax the restrictions of probability distribution of design variables. Finally, the practicality, efficiency and accuracy of the proposed method are demonstrated by numerical examples.展开更多
For same cases the rules of monosource fuzzy numbers con be used into the solution of fuzzy stochastic finite element equations in engineering. This method can reduce the computing quantity of the solution. It can be ...For same cases the rules of monosource fuzzy numbers con be used into the solution of fuzzy stochastic finite element equations in engineering. This method can reduce the computing quantity of the solution. It can be proved that the amount of the solution is nearly as much as that with the general stochastic finite element method (SFEM). In addition, a new method to appreciate the structural fuzzy failure probability is presented for the needs of the modem engineering design.展开更多
基金Supported by the National High Technology Research and Development Program of China (Grant No. 2007AA04Z442)National Natural Science Foundation of China (Grant No. 50875039)
文摘Based on the reliability and mechanism kinematic accuracy theories, we propose a general methodology for system reliability analysis of kinematic performance of planar mechanisms. The loop closure equations are used to estimate the kinematic performance errors of planar mechanisms. Reliability and system reliability theories are introduced to develop the limit state functions (LSF) for failure of kinematic performance qualities. The statistical fourth moment method and the Edgeworth series technique are used on system reliability analysis for kinematic performance of planar mechanisms, which relax the restrictions of probability distribution of design variables. Finally, the practicality, efficiency and accuracy of the proposed method are demonstrated by numerical examples.
文摘For same cases the rules of monosource fuzzy numbers con be used into the solution of fuzzy stochastic finite element equations in engineering. This method can reduce the computing quantity of the solution. It can be proved that the amount of the solution is nearly as much as that with the general stochastic finite element method (SFEM). In addition, a new method to appreciate the structural fuzzy failure probability is presented for the needs of the modem engineering design.