随着智能电网建设的全面展开,产生了大量与设备缺陷相关的电力设备缺陷文本,蕴含着故障类型、故障原因及设备消缺方法等关键信息,是电力领域的研究热点。但缺陷文本存在着体量大、多源异构和内容杂乱冗余的问题,目前缺乏对其进行高效整...随着智能电网建设的全面展开,产生了大量与设备缺陷相关的电力设备缺陷文本,蕴含着故障类型、故障原因及设备消缺方法等关键信息,是电力领域的研究热点。但缺陷文本存在着体量大、多源异构和内容杂乱冗余的问题,目前缺乏对其进行高效整合利用的方法。针对以上问题,该文基于BERT(bidirectional encoder representation from transformers)模型对命名实体抽取技术展开研究。一方面,增加了双向长短期记忆(bi-directional long short-term memory,Bi-LSTM)层进一步提取文本语义信息;另一方面,采用条件随机场(conditional random field,CRF)替换了BERT的输出层,克服了预测标签的局部最优问题。最后融合以上2种策略提出了改进BERT算法,即将BERT与双向长短记忆网络和条件随机场相结合,实现了缺陷文本的命名实体抽取。实验结果表明,改进BERT算法在7类实体上均取得了较高的F1值(精确率和召回率的加权调和平均值)。与BERT相比,实体抽取的总体精确率和召回率分别提升了0.94%和0.95%。展开更多
文摘随着智能电网建设的全面展开,产生了大量与设备缺陷相关的电力设备缺陷文本,蕴含着故障类型、故障原因及设备消缺方法等关键信息,是电力领域的研究热点。但缺陷文本存在着体量大、多源异构和内容杂乱冗余的问题,目前缺乏对其进行高效整合利用的方法。针对以上问题,该文基于BERT(bidirectional encoder representation from transformers)模型对命名实体抽取技术展开研究。一方面,增加了双向长短期记忆(bi-directional long short-term memory,Bi-LSTM)层进一步提取文本语义信息;另一方面,采用条件随机场(conditional random field,CRF)替换了BERT的输出层,克服了预测标签的局部最优问题。最后融合以上2种策略提出了改进BERT算法,即将BERT与双向长短记忆网络和条件随机场相结合,实现了缺陷文本的命名实体抽取。实验结果表明,改进BERT算法在7类实体上均取得了较高的F1值(精确率和召回率的加权调和平均值)。与BERT相比,实体抽取的总体精确率和召回率分别提升了0.94%和0.95%。