The discrete element method (DEM) was used to simulate the flow characteristic and strength characteristic of the conditioned sands in the earth pressure balance (EPB) tunneling. In the laboratory the conditioned sand...The discrete element method (DEM) was used to simulate the flow characteristic and strength characteristic of the conditioned sands in the earth pressure balance (EPB) tunneling. In the laboratory the conditioned sands were reproduced and the slump test and the direct shear test of the conditioned sands were implemented. A DEM equivalent model that can simulate the macro mechanical characteristic of the conditioned sands was proposed,and the corresponding numerical models of the slump test and the shear test were established. By selecting proper DEM model parameters,the errors of the slump values between the simulation results and the test results are in the range of 10.3%-14.3%,and the error of the curves between the shear displacement and the shear stress calculated with the DEM simulation is 4.68%-16.5% compared with that of the laboratory direct shear test. This illustrates that the proposed DEM equivalent model can approximately simulate the mechanical characteristics of the conditioned sands,which provides the basis for further simulation of the interaction between the conditioned soil and the chamber pressure system of the EPB machine.展开更多
BACKGROUND It is important to diagnose depression in Parkinson’s disease(DPD)as soon as possible and identify the predictors of depression to improve quality of life in Parkinson’s disease(PD)patients.AIM To develop...BACKGROUND It is important to diagnose depression in Parkinson’s disease(DPD)as soon as possible and identify the predictors of depression to improve quality of life in Parkinson’s disease(PD)patients.AIM To develop a model for predicting DPD based on the support vector machine,while considering sociodemographic factors,health habits,Parkinson's symptoms,sleep behavior disorders,and neuropsychiatric indicators as predictors and provide baseline data for identifying DPD.METHODS This study analyzed 223 of 335 patients who were 60 years or older with PD.Depression was measured using the 30 items of the Geriatric Depression Scale,and the explanatory variables included PD-related motor signs,rapid eye movement sleep behavior disorders,and neuropsychological tests.The support vector machine was used to develop a DPD prediction model.RESULTS When the effects of PD motor symptoms were compared using“functional weight”,late motor complications(occurrence of levodopa-induced dyskinesia)were the most influential risk factors for Parkinson's symptoms.CONCLUSION It is necessary to develop customized screening tests that can detect DPD in the early stage and continuously monitor high-risk groups based on the factors related to DPD derived from this predictive model in order to maintain the emotional health of PD patients.展开更多
Mathematical(data-driven)models based on state-of-the-art(SOTA)machine learning and deep learning models and data collected from 12,786 heats were established to predict the values of temperature,sample,and carbon(TSC...Mathematical(data-driven)models based on state-of-the-art(SOTA)machine learning and deep learning models and data collected from 12,786 heats were established to predict the values of temperature,sample,and carbon(TSC)test,including temperature of molten steel(TSC-Temp),carbon content(TSC-C)and phosphorus content(TSC-P),which made prepa-ration for eliminating the TSC test.To maximize the prediction accuracy of the proposed approach,various models with different inputs were implemented and compared,and the best models were applied to the production process of a Hesteel Group steelmaking plant in China in the field.The number of tabular features(hot metal information,scrap,additives,blowing practices,and preset values)was expanded,and time series(off-gas profiles and blowing practice curves)that could reflect the entire steelmaking process were introduced as inputs.First,the latest machine learning models(LightGBM,CatBoost,TabNet,and NODE)were used to make predictions with tabular features,and the best coefficient of determination R^(2)values obtained for TSC-P,TSC-C and TSC-Temp predictions were 0.435(LightGBM),0.857(Cat-Boost)and 0.678(LightGBM),respectively,which were higher than those of classic models(backpropagation and support vector machine).Then,making predictions was performed by using SOTA time series regression models(SCINet,DLinear,Informer,and MLSTM-FCN)with original time series,SOTA image regression models(NesT,CaiT,ResNeXt,and GoogLeNet)with resized time series,and the proposed Concatenate-Model and Parallel-Model with both tabular features and time series.Through optimization and comparisons,it was finally determined that the Concatenate-Model with MLSTM-FCN,SCINet and Informer as feature extractors performed the best,and its R^(2)values for predicting TSC-P,TSC-C and TSC-Temp reached 0.470,0.858 and 0.710,respectively.Its field test accuracies for TSC-P,TSC-C and TSC-Temp were 0.459,0.850 and 0.685,respectively.A related importance analysis was carried out,and dynamic control methods based on pred展开更多
基金Project (2007CB714006) supported by the National Basic Research Program of China
文摘The discrete element method (DEM) was used to simulate the flow characteristic and strength characteristic of the conditioned sands in the earth pressure balance (EPB) tunneling. In the laboratory the conditioned sands were reproduced and the slump test and the direct shear test of the conditioned sands were implemented. A DEM equivalent model that can simulate the macro mechanical characteristic of the conditioned sands was proposed,and the corresponding numerical models of the slump test and the shear test were established. By selecting proper DEM model parameters,the errors of the slump values between the simulation results and the test results are in the range of 10.3%-14.3%,and the error of the curves between the shear displacement and the shear stress calculated with the DEM simulation is 4.68%-16.5% compared with that of the laboratory direct shear test. This illustrates that the proposed DEM equivalent model can approximately simulate the mechanical characteristics of the conditioned sands,which provides the basis for further simulation of the interaction between the conditioned soil and the chamber pressure system of the EPB machine.
基金the National Research Foundation of Korea,No.NRF-2019S1A5A8034211the National Research Foundation of Korea,No.NRF-2018R1D1A1B07041091.
文摘BACKGROUND It is important to diagnose depression in Parkinson’s disease(DPD)as soon as possible and identify the predictors of depression to improve quality of life in Parkinson’s disease(PD)patients.AIM To develop a model for predicting DPD based on the support vector machine,while considering sociodemographic factors,health habits,Parkinson's symptoms,sleep behavior disorders,and neuropsychiatric indicators as predictors and provide baseline data for identifying DPD.METHODS This study analyzed 223 of 335 patients who were 60 years or older with PD.Depression was measured using the 30 items of the Geriatric Depression Scale,and the explanatory variables included PD-related motor signs,rapid eye movement sleep behavior disorders,and neuropsychological tests.The support vector machine was used to develop a DPD prediction model.RESULTS When the effects of PD motor symptoms were compared using“functional weight”,late motor complications(occurrence of levodopa-induced dyskinesia)were the most influential risk factors for Parkinson's symptoms.CONCLUSION It is necessary to develop customized screening tests that can detect DPD in the early stage and continuously monitor high-risk groups based on the factors related to DPD derived from this predictive model in order to maintain the emotional health of PD patients.
基金This research has been supported by the Natural Science Foundation of Hebei Province,China(E2022318002).Thanks are given to Tangsteel Co.,Ltd.of Hesteel Group and Digital Co.,Ltd.of Hesteel Group for providing detailed data,hardware and software support for model development and field production test.
文摘Mathematical(data-driven)models based on state-of-the-art(SOTA)machine learning and deep learning models and data collected from 12,786 heats were established to predict the values of temperature,sample,and carbon(TSC)test,including temperature of molten steel(TSC-Temp),carbon content(TSC-C)and phosphorus content(TSC-P),which made prepa-ration for eliminating the TSC test.To maximize the prediction accuracy of the proposed approach,various models with different inputs were implemented and compared,and the best models were applied to the production process of a Hesteel Group steelmaking plant in China in the field.The number of tabular features(hot metal information,scrap,additives,blowing practices,and preset values)was expanded,and time series(off-gas profiles and blowing practice curves)that could reflect the entire steelmaking process were introduced as inputs.First,the latest machine learning models(LightGBM,CatBoost,TabNet,and NODE)were used to make predictions with tabular features,and the best coefficient of determination R^(2)values obtained for TSC-P,TSC-C and TSC-Temp predictions were 0.435(LightGBM),0.857(Cat-Boost)and 0.678(LightGBM),respectively,which were higher than those of classic models(backpropagation and support vector machine).Then,making predictions was performed by using SOTA time series regression models(SCINet,DLinear,Informer,and MLSTM-FCN)with original time series,SOTA image regression models(NesT,CaiT,ResNeXt,and GoogLeNet)with resized time series,and the proposed Concatenate-Model and Parallel-Model with both tabular features and time series.Through optimization and comparisons,it was finally determined that the Concatenate-Model with MLSTM-FCN,SCINet and Informer as feature extractors performed the best,and its R^(2)values for predicting TSC-P,TSC-C and TSC-Temp reached 0.470,0.858 and 0.710,respectively.Its field test accuracies for TSC-P,TSC-C and TSC-Temp were 0.459,0.850 and 0.685,respectively.A related importance analysis was carried out,and dynamic control methods based on pred