The operating state of bearing affects the performance of rotating machinery;thus,how to accurately extract features from the original vibration signals and recognise the faulty parts as early as possible is very crit...The operating state of bearing affects the performance of rotating machinery;thus,how to accurately extract features from the original vibration signals and recognise the faulty parts as early as possible is very critical.In this study,the one‐dimensional ternary model which has been proved to be an effective statistical method in feature selection is introduced and shapelet transformation is proposed to calculate the parameter of one‐dimensional ternary model that is usually selected by trial and error.Then XGBoost is used to recognise the faults from the obtained features,and artificial bee colony algorithm(ABC)is introduced to optimise the parameters of XGBoost.Moreover,for improving the performance of intelligent algorithm,an improved strategy where the evolution is guided by the probability that the optimal solution appears in certain solution space is proposed.The experimental results based on the failure vibration signal samples show that the average accuracy of fault signal recognition can reach 97%,which is much higher than the ones corresponding to traditional extraction strategies.And with the help of improved ABC algorithm,the performance of XGBoost classifier could be optimised;the accuracy could be improved from 97.02%to 98.60%compared with the traditional classification strategy.展开更多
Catalyst-free InGaAs nanowires grown by selective area epitaxy are promising building blocks for future optoelectronic devices in the infrared spectral region.Despite progress,the role of pattern geometry and growth p...Catalyst-free InGaAs nanowires grown by selective area epitaxy are promising building blocks for future optoelectronic devices in the infrared spectral region.Despite progress,the role of pattern geometry and growth parameters on the composition,microstructure,and optical properties of InGaAs nanowires is still unresolved.Here,we present an optimised growth parameter window to achieve highly uniform In1-xGaxAs nanowire arrays on GaAs(111)B substrate over an extensive range of Ga concentrations,from 0.1 to 0.91,by selective-area metal-organic vapor-phase epitaxy.We observe that the Ga content always increases with decreasing In/(Ga+In)precursor ratio and group V flow rate and increasing growth temperature.The increase in Ga content is supported by a blue shift in the photoluminescence peak emission.The geometry of the nanowire arrays also plays an important role in the resulting composition.Notably,increasing the nanowire pitch size from 0.6 to 2μm in a patterned array shifts the photoluminescence peak emission by up to 120 meV.Irrespective of these growth and geometry parameters,the Ga content determines the crystal structure,resulting in a predominantly wurtzite structure for xGa≤0.3 and a predominantly zinc blende phase for xGa≥0.65.These insights on the factors controlling the composition of InGaAs nanowires grown by a scalable catalyst-free approach provide directions for engineering nanowires as functional components of future optoelectronic devices.展开更多
Purpose-The purpose of this study is to develop a hybrid algorithm for segmenting tumor from ultrasound images of the liver.Design/methodology/approach-After collecting the ultrasound images,contrast-limited adaptive ...Purpose-The purpose of this study is to develop a hybrid algorithm for segmenting tumor from ultrasound images of the liver.Design/methodology/approach-After collecting the ultrasound images,contrast-limited adaptive histogram equalization approach(CLAHE)is applied as preprocessing,in order to enhance the visual quality of the images that helps in better segmentation.Then,adaptively regularized kernel-based fuzzy C means(ARKFCM)is used to segment tumor from the enhanced image along with local ternary pattern combined with selective level set approaches.Findings-The proposed segmentation algorithm precisely segments the tumor portions from the enhanced images with lower computation cost.The proposed segmentation algorithm is compared with the existing algorithms and ground truth values in terms of Jaccard coefficient,dice coefficient,precision,Matthews correlation coefficient,f-score and accuracy.The experimental analysis shows that the proposed algorithm achieved 99.18% of accuracy and 92.17% of f-score value,which is better than the existing algorithms.Practical implications-From the experimental analysis,the proposed ARKFCM with enhanced level set algorithm obtained better performance in ultrasound liver tumor segmentation related to graph-based algorithm.However,the proposed algorithm showed 3.11% improvement in dice coefficient compared to graph-based algorithm.Originality/value-The image preprocessing is carried out using CLAHE algorithm.The preprocessed image is segmented by employing selective level set model and Local Ternary Pattern in ARKFCM algorithm.In this research,the proposed algorithm has advantages such as independence of clustering parameters,robustness in preserving the image details and optimal in finding the threshold value that effectively reduces the computational cost.展开更多
With the increasing popularity of high-resolution remote sensing images,the remote sensing image retrieval(RSIR)has always been a topic of major issue.A combined,global non-subsampled shearlet transform(NSST)-domain s...With the increasing popularity of high-resolution remote sensing images,the remote sensing image retrieval(RSIR)has always been a topic of major issue.A combined,global non-subsampled shearlet transform(NSST)-domain statistical features(NSSTds)and local three dimensional local ternary pattern(3D-LTP)features,is proposed for high-resolution remote sensing images.We model the NSST image coefficients of detail subbands using 2-state laplacian mixture(LM)distribution and its three parameters are estimated using Expectation-Maximization(EM)algorithm.We also calculate the statistical parameters such as subband kurtosis and skewness from detail subbands along with mean and standard deviation calculated from approximation subband,and concatenate all of them with the 2-state LM parameters to describe the global features of the image.The various properties of NSST such as multiscale,localization and flexible directional sensitivity make it a suitable choice to provide an effective approximation of an image.In order to extract the dense local features,a new 3D-LTP is proposed where dimension reduction is performed via selection of‘uniform’patterns.The 3D-LTP is calculated from spatial RGB planes of the input image.The proposed inter-channel 3D-LTP not only exploits the local texture information but the color information is captured too.Finally,a fused feature representation(NSSTds-3DLTP)is proposed using new global(NSSTds)and local(3D-LTP)features to enhance the discriminativeness of features.The retrieval performance of proposed NSSTds-3DLTP features are tested on three challenging remote sensing image datasets such as WHU-RS19,Aerial Image Dataset(AID)and PatternNet in terms of mean average precision(MAP),average normalized modified retrieval rank(ANMRR)and precision-recall(P-R)graph.The experimental results are encouraging and the NSSTds-3DLTP features leads to superior retrieval performance compared to many well known existing descriptors such as Gabor RGB,Granulometry,local binary pattern(LBP),Fisher vector(FV),vec展开更多
基金National Nature Science Foundation of China,Grant/Award Number:U1813201the Key Scientific Research Projects of Henan Province,Grant/Award Number:22A413011+2 种基金the Training Program for Young Teachers in Universities of Henan Province,Grant/Award Number:2020GGJS137Henan Province Science and Technology R&D projects,Grant/Award Number:202102210135,212102310547 and 212102210080High‐end foreign expert program of Ministry of Science and Technology,Grant/Award Number:G2021026006L。
文摘The operating state of bearing affects the performance of rotating machinery;thus,how to accurately extract features from the original vibration signals and recognise the faulty parts as early as possible is very critical.In this study,the one‐dimensional ternary model which has been proved to be an effective statistical method in feature selection is introduced and shapelet transformation is proposed to calculate the parameter of one‐dimensional ternary model that is usually selected by trial and error.Then XGBoost is used to recognise the faults from the obtained features,and artificial bee colony algorithm(ABC)is introduced to optimise the parameters of XGBoost.Moreover,for improving the performance of intelligent algorithm,an improved strategy where the evolution is guided by the probability that the optimal solution appears in certain solution space is proposed.The experimental results based on the failure vibration signal samples show that the average accuracy of fault signal recognition can reach 97%,which is much higher than the ones corresponding to traditional extraction strategies.And with the help of improved ABC algorithm,the performance of XGBoost classifier could be optimised;the accuracy could be improved from 97.02%to 98.60%compared with the traditional classification strategy.
文摘Catalyst-free InGaAs nanowires grown by selective area epitaxy are promising building blocks for future optoelectronic devices in the infrared spectral region.Despite progress,the role of pattern geometry and growth parameters on the composition,microstructure,and optical properties of InGaAs nanowires is still unresolved.Here,we present an optimised growth parameter window to achieve highly uniform In1-xGaxAs nanowire arrays on GaAs(111)B substrate over an extensive range of Ga concentrations,from 0.1 to 0.91,by selective-area metal-organic vapor-phase epitaxy.We observe that the Ga content always increases with decreasing In/(Ga+In)precursor ratio and group V flow rate and increasing growth temperature.The increase in Ga content is supported by a blue shift in the photoluminescence peak emission.The geometry of the nanowire arrays also plays an important role in the resulting composition.Notably,increasing the nanowire pitch size from 0.6 to 2μm in a patterned array shifts the photoluminescence peak emission by up to 120 meV.Irrespective of these growth and geometry parameters,the Ga content determines the crystal structure,resulting in a predominantly wurtzite structure for xGa≤0.3 and a predominantly zinc blende phase for xGa≥0.65.These insights on the factors controlling the composition of InGaAs nanowires grown by a scalable catalyst-free approach provide directions for engineering nanowires as functional components of future optoelectronic devices.
文摘Purpose-The purpose of this study is to develop a hybrid algorithm for segmenting tumor from ultrasound images of the liver.Design/methodology/approach-After collecting the ultrasound images,contrast-limited adaptive histogram equalization approach(CLAHE)is applied as preprocessing,in order to enhance the visual quality of the images that helps in better segmentation.Then,adaptively regularized kernel-based fuzzy C means(ARKFCM)is used to segment tumor from the enhanced image along with local ternary pattern combined with selective level set approaches.Findings-The proposed segmentation algorithm precisely segments the tumor portions from the enhanced images with lower computation cost.The proposed segmentation algorithm is compared with the existing algorithms and ground truth values in terms of Jaccard coefficient,dice coefficient,precision,Matthews correlation coefficient,f-score and accuracy.The experimental analysis shows that the proposed algorithm achieved 99.18% of accuracy and 92.17% of f-score value,which is better than the existing algorithms.Practical implications-From the experimental analysis,the proposed ARKFCM with enhanced level set algorithm obtained better performance in ultrasound liver tumor segmentation related to graph-based algorithm.However,the proposed algorithm showed 3.11% improvement in dice coefficient compared to graph-based algorithm.Originality/value-The image preprocessing is carried out using CLAHE algorithm.The preprocessed image is segmented by employing selective level set model and Local Ternary Pattern in ARKFCM algorithm.In this research,the proposed algorithm has advantages such as independence of clustering parameters,robustness in preserving the image details and optimal in finding the threshold value that effectively reduces the computational cost.
文摘With the increasing popularity of high-resolution remote sensing images,the remote sensing image retrieval(RSIR)has always been a topic of major issue.A combined,global non-subsampled shearlet transform(NSST)-domain statistical features(NSSTds)and local three dimensional local ternary pattern(3D-LTP)features,is proposed for high-resolution remote sensing images.We model the NSST image coefficients of detail subbands using 2-state laplacian mixture(LM)distribution and its three parameters are estimated using Expectation-Maximization(EM)algorithm.We also calculate the statistical parameters such as subband kurtosis and skewness from detail subbands along with mean and standard deviation calculated from approximation subband,and concatenate all of them with the 2-state LM parameters to describe the global features of the image.The various properties of NSST such as multiscale,localization and flexible directional sensitivity make it a suitable choice to provide an effective approximation of an image.In order to extract the dense local features,a new 3D-LTP is proposed where dimension reduction is performed via selection of‘uniform’patterns.The 3D-LTP is calculated from spatial RGB planes of the input image.The proposed inter-channel 3D-LTP not only exploits the local texture information but the color information is captured too.Finally,a fused feature representation(NSSTds-3DLTP)is proposed using new global(NSSTds)and local(3D-LTP)features to enhance the discriminativeness of features.The retrieval performance of proposed NSSTds-3DLTP features are tested on three challenging remote sensing image datasets such as WHU-RS19,Aerial Image Dataset(AID)and PatternNet in terms of mean average precision(MAP),average normalized modified retrieval rank(ANMRR)and precision-recall(P-R)graph.The experimental results are encouraging and the NSSTds-3DLTP features leads to superior retrieval performance compared to many well known existing descriptors such as Gabor RGB,Granulometry,local binary pattern(LBP),Fisher vector(FV),vec