文本分类是自然语言处理领域中的重要内容,常用于信息检索、情感分析等领域。针对传统的文本分类模型文本特征提取不全面、文本语义表达弱的问题,提出一种基于改进TF-IDF算法、带有注意力机制的长短期记忆卷积网络(Attention base on Bi...文本分类是自然语言处理领域中的重要内容,常用于信息检索、情感分析等领域。针对传统的文本分类模型文本特征提取不全面、文本语义表达弱的问题,提出一种基于改进TF-IDF算法、带有注意力机制的长短期记忆卷积网络(Attention base on Bi-LSTM and CNN,ABLCNN)相结合的文本分类模型。该模型首先利用特征项在类内、类间的分布关系和位置信息改进TF-IDF算法,突出特征项的重要性,并结合Word2vec工具训练的词向量对文本进行表示;然后使用ABLCNN提取文本特征,ABLCNN结合了注意力机制、长短期记忆网络和卷积神经网络的优点,既可以有重点地提取文本的上下文语义特征,又兼顾了局部语义特征;最后,将特征向量通过softmax函数进行文本分类。在THUCNews数据集和online_shopping_10_cats数据集上对基于改进TF-IDF和ABLCNN的文本分类模型进行实验,结果表明,所提模型在两个数据集上的准确率分别为97.38%和91.33%,高于其他文本分类模型。展开更多
文摘文本分类是自然语言处理领域中的重要内容,常用于信息检索、情感分析等领域。针对传统的文本分类模型文本特征提取不全面、文本语义表达弱的问题,提出一种基于改进TF-IDF算法、带有注意力机制的长短期记忆卷积网络(Attention base on Bi-LSTM and CNN,ABLCNN)相结合的文本分类模型。该模型首先利用特征项在类内、类间的分布关系和位置信息改进TF-IDF算法,突出特征项的重要性,并结合Word2vec工具训练的词向量对文本进行表示;然后使用ABLCNN提取文本特征,ABLCNN结合了注意力机制、长短期记忆网络和卷积神经网络的优点,既可以有重点地提取文本的上下文语义特征,又兼顾了局部语义特征;最后,将特征向量通过softmax函数进行文本分类。在THUCNews数据集和online_shopping_10_cats数据集上对基于改进TF-IDF和ABLCNN的文本分类模型进行实验,结果表明,所提模型在两个数据集上的准确率分别为97.38%和91.33%,高于其他文本分类模型。