Using Terahertz Optical Asymmetric Demultiplexer (TOAD) based switch we have designed all-optical parallel half adder and full adder. The approach to design this all-optical arithmetic circuit not only enhances the co...Using Terahertz Optical Asymmetric Demultiplexer (TOAD) based switch we have designed all-optical parallel half adder and full adder. The approach to design this all-optical arithmetic circuit not only enhances the computational speed but also is capable of synthesizing light as input to produce desire output. The main advantage of parallel circuit is synchronization of input which is not required. All the circuits are designed theoretically and verified through numerical simulations.展开更多
An all-optical 3:8 decoder unit with the help of terahertz optical asymmetric demultiplexer (TOAD) is proposed. The all-optical 3:8 decoder unit with a set of all-optical full-adders and optical exclusive-ORs (XORs), ...An all-optical 3:8 decoder unit with the help of terahertz optical asymmetric demultiplexer (TOAD) is proposed. The all-optical 3:8 decoder unit with a set of all-optical full-adders and optical exclusive-ORs (XORs), can be used to perform a fast central processor unit using optical hardware components. We try to exploit the advantages of TOAD-based optical switch to design an integrated all-optical circuit which can perform decoding of signal. A theoretical model is presented and verified through numerical simulation. The new method promises both higher processing speed and accuracy. The model can be extended for studying more complex all-optical circuit of enhanced functionality in which decoder is the basic building block. The operation of the proposed circuit is parallel in nature. The impact of the switching energy with small signal gain and variation of extinction ratio and contrast ration with control pulse energy of the switching outcome is explored and assessed by means of numerical simulations.展开更多
An all-optical 2-to-4 decoder unit with the assist of terahertz optical asymmetric demultiplexer (TOAD) is presented. The all-optical 2-to-4 decoder with a set of all-optical switches is designed which can be used to ...An all-optical 2-to-4 decoder unit with the assist of terahertz optical asymmetric demultiplexer (TOAD) is presented. The all-optical 2-to-4 decoder with a set of all-optical switches is designed which can be used to achieve a high-speed central processor unit using optical hardware. The unique output lines can be used for all-optical header processing. We attempt to develop an integrated all-optical circuit which can perform decoding of signal. This scheme is very simple and flexible for performing different logic operation and to design advanced complex logic. Simulated results are confirming the described methods.展开更多
利用多量子阱结构的非线性半导体光放大器(SOA)构建的太赫兹光非对称解复用器(TOAD),实验实现了一个开关能量低至25 f J,线性度高达0.99的全光采样门.详细分析了采样脉冲功率和非对称偏移量分别对采样窗口形状、宽度和幅度的影响,并研...利用多量子阱结构的非线性半导体光放大器(SOA)构建的太赫兹光非对称解复用器(TOAD),实验实现了一个开关能量低至25 f J,线性度高达0.99的全光采样门.详细分析了采样脉冲功率和非对称偏移量分别对采样窗口形状、宽度和幅度的影响,并研究了不同采样窗口宽度下TOAD的开关能量及线性度的变化规律.展开更多
Various designed circuits for multiple-valued all-optical arithmetic are demonstrated. The terahertz-optical-asymmetric-demultiplexer (TOAD) switch is used as the basic structure unit in the proposed circuits due to i...Various designed circuits for multiple-valued all-optical arithmetic are demonstrated. The terahertz-optical-asymmetric-demultiplexer (TOAD) switch is used as the basic structure unit in the proposed circuits due to its compact size, thermal stability, and low power operation. The designs of trinary and quaternary signed-digit numbers based adders are presented using different polarized states of light. These proposed polarization-encoded based adders use much less switches and their speeds are higher than the intensity-encoded counterparts. Further, it will be shown that one of the proposed trinary signed-digit adders is twice as fast as a recently reported modified signed-digit adder.展开更多
文摘Using Terahertz Optical Asymmetric Demultiplexer (TOAD) based switch we have designed all-optical parallel half adder and full adder. The approach to design this all-optical arithmetic circuit not only enhances the computational speed but also is capable of synthesizing light as input to produce desire output. The main advantage of parallel circuit is synchronization of input which is not required. All the circuits are designed theoretically and verified through numerical simulations.
文摘An all-optical 3:8 decoder unit with the help of terahertz optical asymmetric demultiplexer (TOAD) is proposed. The all-optical 3:8 decoder unit with a set of all-optical full-adders and optical exclusive-ORs (XORs), can be used to perform a fast central processor unit using optical hardware components. We try to exploit the advantages of TOAD-based optical switch to design an integrated all-optical circuit which can perform decoding of signal. A theoretical model is presented and verified through numerical simulation. The new method promises both higher processing speed and accuracy. The model can be extended for studying more complex all-optical circuit of enhanced functionality in which decoder is the basic building block. The operation of the proposed circuit is parallel in nature. The impact of the switching energy with small signal gain and variation of extinction ratio and contrast ration with control pulse energy of the switching outcome is explored and assessed by means of numerical simulations.
文摘An all-optical 2-to-4 decoder unit with the assist of terahertz optical asymmetric demultiplexer (TOAD) is presented. The all-optical 2-to-4 decoder with a set of all-optical switches is designed which can be used to achieve a high-speed central processor unit using optical hardware. The unique output lines can be used for all-optical header processing. We attempt to develop an integrated all-optical circuit which can perform decoding of signal. This scheme is very simple and flexible for performing different logic operation and to design advanced complex logic. Simulated results are confirming the described methods.
文摘利用多量子阱结构的非线性半导体光放大器(SOA)构建的太赫兹光非对称解复用器(TOAD),实验实现了一个开关能量低至25 f J,线性度高达0.99的全光采样门.详细分析了采样脉冲功率和非对称偏移量分别对采样窗口形状、宽度和幅度的影响,并研究了不同采样窗口宽度下TOAD的开关能量及线性度的变化规律.
文摘Various designed circuits for multiple-valued all-optical arithmetic are demonstrated. The terahertz-optical-asymmetric-demultiplexer (TOAD) switch is used as the basic structure unit in the proposed circuits due to its compact size, thermal stability, and low power operation. The designs of trinary and quaternary signed-digit numbers based adders are presented using different polarized states of light. These proposed polarization-encoded based adders use much less switches and their speeds are higher than the intensity-encoded counterparts. Further, it will be shown that one of the proposed trinary signed-digit adders is twice as fast as a recently reported modified signed-digit adder.