This paper extends the covariant derivative un der curved coordinate systems in 3D Euclid space. Based on the axiom of the covariant form invariability, the classical covariant derivative that can only act on componen...This paper extends the covariant derivative un der curved coordinate systems in 3D Euclid space. Based on the axiom of the covariant form invariability, the classical covariant derivative that can only act on components is ex tended to the generalized covariant derivative that can act on any geometric quantity including base vectors, vectors and tensors. Under the axiom, the algebra structure of the gen eralized covariant derivative is proved to be covariant dif ferential ring. Based on the powerful operation capabilities and simple analytical properties of the generalized covariant derivative, the tensor analysis in curved coordinate systems is simplified to a large extent.展开更多
This paper reports the new progresses in the axiomatization of tensor anal- ysis, including the thought of axiomatization, the concept of generalized components, the axiom of covariant form invariability, the axiomati...This paper reports the new progresses in the axiomatization of tensor anal- ysis, including the thought of axiomatization, the concept of generalized components, the axiom of covariant form invariability, the axiomatized definition, the algebraic structure, the transformation group, and the simple calculation of generalized covariant differentia- tions. These progresses strengthen the tendency of the axiomatization of tensor analysis.展开更多
基金supported by the NSFC(11072125 and 11272175)the NSF of Jiangsu Province(SBK201140044)the Specialized Research Fund for Doctoral Program of Higher Education(20130002110044)
文摘This paper extends the covariant derivative un der curved coordinate systems in 3D Euclid space. Based on the axiom of the covariant form invariability, the classical covariant derivative that can only act on components is ex tended to the generalized covariant derivative that can act on any geometric quantity including base vectors, vectors and tensors. Under the axiom, the algebra structure of the gen eralized covariant derivative is proved to be covariant dif ferential ring. Based on the powerful operation capabilities and simple analytical properties of the generalized covariant derivative, the tensor analysis in curved coordinate systems is simplified to a large extent.
基金supported by the National Natural Science Foundation of China(Nos.11072125 and11272175)the Natural Science Foundation of Jiangsu Province(No.SBK201140044)the Specialized Research Fund for Doctoral Program of Higher Education(No.20130002110044)
文摘This paper reports the new progresses in the axiomatization of tensor anal- ysis, including the thought of axiomatization, the concept of generalized components, the axiom of covariant form invariability, the axiomatized definition, the algebraic structure, the transformation group, and the simple calculation of generalized covariant differentia- tions. These progresses strengthen the tendency of the axiomatization of tensor analysis.