A numerical method is presented for the large deflection in elastic analysis of tensegrity structures including both geometric and material nonlinearities.The geometric nonlinearity is considered based on both total L...A numerical method is presented for the large deflection in elastic analysis of tensegrity structures including both geometric and material nonlinearities.The geometric nonlinearity is considered based on both total Lagrangian and updated Lagrangian formulations,while the material nonlinearity is treated through elastoplastic stress-strain relationship.The nonlinear equilibrium equations are solved using an incremental-iterative scheme in conjunction with the modified Newton-Raphson method.A computer program is developed to predict the mechanical responses of tensegrity systems under tensile,compressive and flexural loadings.Numerical results obtained are compared with those reported in the literature to demonstrate the accuracy and efficiency of the proposed program.The flexural behavior of the double layer quadruplex tensegrity grid is sufficiently good for lightweight large-span structural applications.On the other hand,its bending strength capacity is not sensitive to the self-stress level.展开更多
Knowing how to make a multi-locomotion robot achieve locomotion transition under different terrains is a challenging problem,especially for tensegrity robots with multi-locomotion modes.In this study,a motion planning...Knowing how to make a multi-locomotion robot achieve locomotion transition under different terrains is a challenging problem,especially for tensegrity robots with multi-locomotion modes.In this study,a motion planning method for the transition of a multi-locomotion tensegrity robot(hereafter TJUBot)under different terrains is proposed.The robot can achieve four locomotion modes:earthworm-like,inchworm-like,tumbling,and sliding locomotion with only two motors.Kinematic models of the four locomotion modes under five typical terrains,including flat ground,confined space,obstacle,gap,and descending slope,are established using the energy method.Meanwhile,the kinematic characteristics(driving law and initial position)of the robot under these terrains are obtained.On this basis,motion planning for the locomotion transition of TJUBot is conducted,which includes a perception strategy based on three laser sensors and a transition strategy under different terrains.The driving laws of the two motors that can ensure the effective locomotion transition of TJUBot under different terrains are naturally obtained.Finally,experiments are conducted.Results demonstrate that the robot can achieve effective locomotion transition when the motion planning method is used.展开更多
基金support of the research reported here by Basic Science Research Program through the National Research Foundation of Korea (NRF)funded by the Ministry of Education, Science and Technology (NRF2010-0019373)
文摘A numerical method is presented for the large deflection in elastic analysis of tensegrity structures including both geometric and material nonlinearities.The geometric nonlinearity is considered based on both total Lagrangian and updated Lagrangian formulations,while the material nonlinearity is treated through elastoplastic stress-strain relationship.The nonlinear equilibrium equations are solved using an incremental-iterative scheme in conjunction with the modified Newton-Raphson method.A computer program is developed to predict the mechanical responses of tensegrity systems under tensile,compressive and flexural loadings.Numerical results obtained are compared with those reported in the literature to demonstrate the accuracy and efficiency of the proposed program.The flexural behavior of the double layer quadruplex tensegrity grid is sufficiently good for lightweight large-span structural applications.On the other hand,its bending strength capacity is not sensitive to the self-stress level.
基金supported by the National Natural Science Foundation of China(Grant Nos.62027812,52275028 and 52205028)the Tianjin Science and Technology Planning Project(Grant No.20201193)。
文摘Knowing how to make a multi-locomotion robot achieve locomotion transition under different terrains is a challenging problem,especially for tensegrity robots with multi-locomotion modes.In this study,a motion planning method for the transition of a multi-locomotion tensegrity robot(hereafter TJUBot)under different terrains is proposed.The robot can achieve four locomotion modes:earthworm-like,inchworm-like,tumbling,and sliding locomotion with only two motors.Kinematic models of the four locomotion modes under five typical terrains,including flat ground,confined space,obstacle,gap,and descending slope,are established using the energy method.Meanwhile,the kinematic characteristics(driving law and initial position)of the robot under these terrains are obtained.On this basis,motion planning for the locomotion transition of TJUBot is conducted,which includes a perception strategy based on three laser sensors and a transition strategy under different terrains.The driving laws of the two motors that can ensure the effective locomotion transition of TJUBot under different terrains are naturally obtained.Finally,experiments are conducted.Results demonstrate that the robot can achieve effective locomotion transition when the motion planning method is used.