AIM: In a previous study, the anti-inflammatory effects of tectorigenin were disclosed. In this study, the anti-inflammatory effects of tectorigenin on acute lung injury using a lipopolysaccharide(LPS)-induced acute l...AIM: In a previous study, the anti-inflammatory effects of tectorigenin were disclosed. In this study, the anti-inflammatory effects of tectorigenin on acute lung injury using a lipopolysaccharide(LPS)-induced acute lung injury(ALI) mouse model were investigated. METHOD: The cell-count in the bronchoalveolar lavage fluid(BALF) was measured. The animal lung edema degree was evaluated by the wet/dry weight(W/D) ratio. The superoxidase dismutase(SOD) activity and myeloperoxidase(MPO) activity was assayed using SOD and MPO kits, respectively. The levels of inflammatory mediators, including tumor necrosis factor-α(TNF-α), IL-1β, and IL-6 were assayed using an enzyme-linked immunosorbent assay method. Pathological changes of lung tissues were observed through HE staining. The inflammatory signal pathway related protein nuclear factor NF-κB p65 mR NA expression was measured by real-time PCR, and the protein level of NF-κB p65 was measured using Western blotting analysis. RESULTS: The data showed that treatment with the tectorigenin markedly attenuated the inflammatory cell numbers in the BALF, decreased nuclear factor NF-κB p65 mR NA level and protein level in the lungs, and improved SOD activity and inhibited MPO activity. Histological studies showed that tectorigenin substantially inhibited LPS-induced neutrophils in lung tissue compared with the model group. CONCLUSION: The results indicated that tectorigenin had a protective effect on LPS-induced ALI in mice.展开更多
AIM: To investigate the effect of tectorigenin on proliferation and apoptosis of hepatic stellate cells (HSC)-T6 cells. METHODS: HSC-T6 cells were incubated with tectorigenin at different concentrations, and their pro...AIM: To investigate the effect of tectorigenin on proliferation and apoptosis of hepatic stellate cells (HSC)-T6 cells. METHODS: HSC-T6 cells were incubated with tectorigenin at different concentrations, and their proliferation was assessed by bromodeoxyuridine incorporation assay. Apoptosis was detected by flow cytometry assay with Hoechst 33342 staining. Also, generation of reactive oxygen species (ROS), intracellular [Ca2+]i, potential of mitochondrial membrane, activities of cytochrome c and caspase-9 and-3 were investigated to explore a conceivable apoptotic pathway. RESULTS: Tectorigenin suppressed the proliferation of HSC-T6 cells and induced apoptosis of HSC-T6 cells in a time-and dose-dependent manner. Tectorigenin at the concentration of 100 μg/mL greatly inhibited the viability of HSC-T6 cells and induced the condensation of chromatin and fragmentation of nuclei. When treated for 48 h, the percentage of cell growth and apoptosis reached 46.3% ± 2.37% (P = 0.004) and 50.67% ± 3.24% (P = 0.003), respectively. Furthermore, tectorigenin-induced apoptosis of HSC-T6 cells was associated with the generation of ROS, increased intracellular [Ca2+]i, loss of mitochondrial membrane potential, translocation of cytochrome c, and activation of caspase-9 and -3. CONCLUSION: Tectorigenin inhibits proliferation of HSC-T6 cells and induces apoptosis of HSC-T6 cells.展开更多
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘AIM: In a previous study, the anti-inflammatory effects of tectorigenin were disclosed. In this study, the anti-inflammatory effects of tectorigenin on acute lung injury using a lipopolysaccharide(LPS)-induced acute lung injury(ALI) mouse model were investigated. METHOD: The cell-count in the bronchoalveolar lavage fluid(BALF) was measured. The animal lung edema degree was evaluated by the wet/dry weight(W/D) ratio. The superoxidase dismutase(SOD) activity and myeloperoxidase(MPO) activity was assayed using SOD and MPO kits, respectively. The levels of inflammatory mediators, including tumor necrosis factor-α(TNF-α), IL-1β, and IL-6 were assayed using an enzyme-linked immunosorbent assay method. Pathological changes of lung tissues were observed through HE staining. The inflammatory signal pathway related protein nuclear factor NF-κB p65 mR NA expression was measured by real-time PCR, and the protein level of NF-κB p65 was measured using Western blotting analysis. RESULTS: The data showed that treatment with the tectorigenin markedly attenuated the inflammatory cell numbers in the BALF, decreased nuclear factor NF-κB p65 mR NA level and protein level in the lungs, and improved SOD activity and inhibited MPO activity. Histological studies showed that tectorigenin substantially inhibited LPS-induced neutrophils in lung tissue compared with the model group. CONCLUSION: The results indicated that tectorigenin had a protective effect on LPS-induced ALI in mice.
基金Supported by The National Natural Science Foundation of China,No.NSFC30801417Natural Science Foundation of Jiangsu Province,No.BK2008267Doctoral Fund of Min-istry of Education of China,No.RFDP200802841004
文摘AIM: To investigate the effect of tectorigenin on proliferation and apoptosis of hepatic stellate cells (HSC)-T6 cells. METHODS: HSC-T6 cells were incubated with tectorigenin at different concentrations, and their proliferation was assessed by bromodeoxyuridine incorporation assay. Apoptosis was detected by flow cytometry assay with Hoechst 33342 staining. Also, generation of reactive oxygen species (ROS), intracellular [Ca2+]i, potential of mitochondrial membrane, activities of cytochrome c and caspase-9 and-3 were investigated to explore a conceivable apoptotic pathway. RESULTS: Tectorigenin suppressed the proliferation of HSC-T6 cells and induced apoptosis of HSC-T6 cells in a time-and dose-dependent manner. Tectorigenin at the concentration of 100 μg/mL greatly inhibited the viability of HSC-T6 cells and induced the condensation of chromatin and fragmentation of nuclei. When treated for 48 h, the percentage of cell growth and apoptosis reached 46.3% ± 2.37% (P = 0.004) and 50.67% ± 3.24% (P = 0.003), respectively. Furthermore, tectorigenin-induced apoptosis of HSC-T6 cells was associated with the generation of ROS, increased intracellular [Ca2+]i, loss of mitochondrial membrane potential, translocation of cytochrome c, and activation of caspase-9 and -3. CONCLUSION: Tectorigenin inhibits proliferation of HSC-T6 cells and induces apoptosis of HSC-T6 cells.