The aim of this study was to develop an adequate mathematical model for long-term forecasting of technological progress and economic growth in the digital age (2020-2050). In addition, the task was to develop a model ...The aim of this study was to develop an adequate mathematical model for long-term forecasting of technological progress and economic growth in the digital age (2020-2050). In addition, the task was to develop a model for forecast calculations of labor productivity in the symbiosis of “man + intelligent machine”, where an intelligent machine (IM) is understood as a computer or robot equipped with elements of artificial intelligence (AI), as well as in the digital economy as a whole. In the course of the study, it was shown that in order to implement its goals the Schumpeter-Kondratiev innovation and cycle theory on forming long waves (LW) of economic development influenced by a powerful cluster of economic technologies engendered by industrial revolutions is most appropriate for a long-term forecasting of technological progress and economic growth. The Solow neoclassical model of economic growth, synchronized with LW, gives the opportunity to forecast economic dynamics of technologically advanced countries with a greater precision up to 30 years, the time which correlates with the continuation of LW. In the information and digital age, the key role among the main factors of growth (capital, labour and technological progress) is played by the latter. The authors have developed an information model which allows for forecasting technological progress basing on growth rates of endogenous technological information in economics. The main regimes of producing technological information, corresponding to the eras of information and digital economies, are given in the article, as well as the Lagrangians that engender them. The model is verified on the example of the 5<sup>th</sup> information LW for the US economy (1982-2018) and it has had highly accurate approximation for both technological progress and economic growth. A number of new results were obtained using the developed information models for forecasting technological progress. The forecasting trajectory of economic growth of developed countries (on the example展开更多
文摘The aim of this study was to develop an adequate mathematical model for long-term forecasting of technological progress and economic growth in the digital age (2020-2050). In addition, the task was to develop a model for forecast calculations of labor productivity in the symbiosis of “man + intelligent machine”, where an intelligent machine (IM) is understood as a computer or robot equipped with elements of artificial intelligence (AI), as well as in the digital economy as a whole. In the course of the study, it was shown that in order to implement its goals the Schumpeter-Kondratiev innovation and cycle theory on forming long waves (LW) of economic development influenced by a powerful cluster of economic technologies engendered by industrial revolutions is most appropriate for a long-term forecasting of technological progress and economic growth. The Solow neoclassical model of economic growth, synchronized with LW, gives the opportunity to forecast economic dynamics of technologically advanced countries with a greater precision up to 30 years, the time which correlates with the continuation of LW. In the information and digital age, the key role among the main factors of growth (capital, labour and technological progress) is played by the latter. The authors have developed an information model which allows for forecasting technological progress basing on growth rates of endogenous technological information in economics. The main regimes of producing technological information, corresponding to the eras of information and digital economies, are given in the article, as well as the Lagrangians that engender them. The model is verified on the example of the 5<sup>th</sup> information LW for the US economy (1982-2018) and it has had highly accurate approximation for both technological progress and economic growth. A number of new results were obtained using the developed information models for forecasting technological progress. The forecasting trajectory of economic growth of developed countries (on the example