The problem of task assignment for multiple cooperating unmanned aerial vehicle(UAV) teams is considered. Multiple UAVs forming several small teams are needed to perform attack tasks on a set of predetermined ground t...The problem of task assignment for multiple cooperating unmanned aerial vehicle(UAV) teams is considered. Multiple UAVs forming several small teams are needed to perform attack tasks on a set of predetermined ground targets. A hierarchical task assignment method is presented to address the problem. It breaks the original problem down to three levels of sub-problems: target clustering, cluster allocation and target assignment. The first two sub-problems are centrally solved by using clustering algorithms and integer linear programming, respectively, and the third sub-problem is solved in a distributed and parallel manner, using a mixed integer linear programming model and an improved ant colony algorithm. The proposed hierarchical method can reduce the computational complexity of the task assignment problem considerably, especially when the number of tasks or the number of UAVs is large. Experimental results show that this method is feasible and more efficient than non-hierarchical methods.展开更多
The formation of the manned aerial vehicle/unmanned aerial vehicle(MAV/UAV) task coalition is considered. To reduce the scale of the problem, the formation progress is divided into three phases. For the task clusterin...The formation of the manned aerial vehicle/unmanned aerial vehicle(MAV/UAV) task coalition is considered. To reduce the scale of the problem, the formation progress is divided into three phases. For the task clustering phase, the geographical position of tasks is taken into consideration and a cluster method is proposed. For the UAV allocation phase, the UAV requirement for both constrained and unconstrained resources is introduced, and a multi-objective optimal algorithm is proposed to solve the allocation problem. For the MAV allocation phase, the optimal model is firstly constructed and it is decomposed according to the ideal of greed to reduce the time complexity of the algorithm. Based on the above phases, the MAV/UAV task coalition formation method is proposed and the effectiveness and practicability are demonstrated by simulation examples.展开更多
基金supported by the National Natural Science Foundation of China(7147205871401048)the Fundamental Research Funds for the Central Universities(2012HGZY0009)
文摘The problem of task assignment for multiple cooperating unmanned aerial vehicle(UAV) teams is considered. Multiple UAVs forming several small teams are needed to perform attack tasks on a set of predetermined ground targets. A hierarchical task assignment method is presented to address the problem. It breaks the original problem down to three levels of sub-problems: target clustering, cluster allocation and target assignment. The first two sub-problems are centrally solved by using clustering algorithms and integer linear programming, respectively, and the third sub-problem is solved in a distributed and parallel manner, using a mixed integer linear programming model and an improved ant colony algorithm. The proposed hierarchical method can reduce the computational complexity of the task assignment problem considerably, especially when the number of tasks or the number of UAVs is large. Experimental results show that this method is feasible and more efficient than non-hierarchical methods.
基金supported by the National Natural Science Foundation of China(61573017 61703425)the Aeronautical Science Fund(20175796014)
文摘The formation of the manned aerial vehicle/unmanned aerial vehicle(MAV/UAV) task coalition is considered. To reduce the scale of the problem, the formation progress is divided into three phases. For the task clustering phase, the geographical position of tasks is taken into consideration and a cluster method is proposed. For the UAV allocation phase, the UAV requirement for both constrained and unconstrained resources is introduced, and a multi-objective optimal algorithm is proposed to solve the allocation problem. For the MAV allocation phase, the optimal model is firstly constructed and it is decomposed according to the ideal of greed to reduce the time complexity of the algorithm. Based on the above phases, the MAV/UAV task coalition formation method is proposed and the effectiveness and practicability are demonstrated by simulation examples.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA15040100)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.2021146).