There are many algorithms for solving complex problems in supervised manner. However, unsupervised tasks are more common in real scenarios. Inspired by the idea of granular computing and the characteristics of human c...There are many algorithms for solving complex problems in supervised manner. However, unsupervised tasks are more common in real scenarios. Inspired by the idea of granular computing and the characteristics of human cognitive process, this paper proposes a complex tasks decomposition mechanism based on Density Peaks Clustering(DPC) to address complex tasks with an unsupervised process, which simulates the multi-granular observation and analysis of human being. Firstly, the DPC algorithm is modified to nullify its essential defects such as the difficulty of locating correct clustering centers and classifying them accurately. Then, the improved DPC algorithm is used to construct the initial decomposition solving space with multi-granularity theory. We also define subtask centers set and the granulation rules to guide the multi-granularity decomposing procedure. These rules are further used to decompose the solving space from coarse granules to the optimal fine granules with a convergent and automated process. Furthermore, comprehensive experiments are presented to verify the applicability and veracity of our proposed method in community-detection tasks with several benchmark complex social networks.The results show that our method outperforms other four state-of-the-art approaches.展开更多
云任务调度作为云计算体系的一个重要组成部分,其调度策略的效果直接影响到云平台资源利用率及用户服务质量。为解决当前云调度策略中Min-Min算法和Ma-Min算法容易因云任务分布导致负载不均衡、资源综合使用率低和任务总体完成时间较大...云任务调度作为云计算体系的一个重要组成部分,其调度策略的效果直接影响到云平台资源利用率及用户服务质量。为解决当前云调度策略中Min-Min算法和Ma-Min算法容易因云任务分布导致负载不均衡、资源综合使用率低和任务总体完成时间较大等问题,提出一种基于三支决策的云任务调度优化算法(Cloud Task Scheduling Algorithm based on three-Way Decision,CTSA-3WD)。根据云任务的执行时间和计算资源的实际情况来标定任务集合中的轻负载任务和重负载任务。借鉴三支决策基本思想,根据两种任务在其任务集合中所占比例进行三支划分,有针对性地对划分后的3个任务集合设计合适的调度策略:针对轻负载任务占比高的任务集合,使用Max-Min算法;针对重负载任务占比高的任务集合,使用Min-Min算法;针对轻重负载任务接近的任务集合,采用基于Min-Min和Max-Min的改进任务调度算法。对分配完毕的节点中的关键资源进行重新调度,在满足总体完成时间减少的前提下选择最匹配的任务分配给轻负载资源。CloudSim仿真平台的实验结果表明,所提出的云任务调度优化算法(CTSA-3WD)相比Min-Min,Max-Min及选择调度算法可以有效提高整体资源利用率,提升了用户的服务质量,同时也使得整个系统中的资源达到更好的负载均衡水平。展开更多
基金supported by the National Natural Science Foundation of China (No. 61572091)Chongqing Postgraduate Scientific Research and Innovation Project (No. CYB16106)
文摘There are many algorithms for solving complex problems in supervised manner. However, unsupervised tasks are more common in real scenarios. Inspired by the idea of granular computing and the characteristics of human cognitive process, this paper proposes a complex tasks decomposition mechanism based on Density Peaks Clustering(DPC) to address complex tasks with an unsupervised process, which simulates the multi-granular observation and analysis of human being. Firstly, the DPC algorithm is modified to nullify its essential defects such as the difficulty of locating correct clustering centers and classifying them accurately. Then, the improved DPC algorithm is used to construct the initial decomposition solving space with multi-granularity theory. We also define subtask centers set and the granulation rules to guide the multi-granularity decomposing procedure. These rules are further used to decompose the solving space from coarse granules to the optimal fine granules with a convergent and automated process. Furthermore, comprehensive experiments are presented to verify the applicability and veracity of our proposed method in community-detection tasks with several benchmark complex social networks.The results show that our method outperforms other four state-of-the-art approaches.
文摘云任务调度作为云计算体系的一个重要组成部分,其调度策略的效果直接影响到云平台资源利用率及用户服务质量。为解决当前云调度策略中Min-Min算法和Ma-Min算法容易因云任务分布导致负载不均衡、资源综合使用率低和任务总体完成时间较大等问题,提出一种基于三支决策的云任务调度优化算法(Cloud Task Scheduling Algorithm based on three-Way Decision,CTSA-3WD)。根据云任务的执行时间和计算资源的实际情况来标定任务集合中的轻负载任务和重负载任务。借鉴三支决策基本思想,根据两种任务在其任务集合中所占比例进行三支划分,有针对性地对划分后的3个任务集合设计合适的调度策略:针对轻负载任务占比高的任务集合,使用Max-Min算法;针对重负载任务占比高的任务集合,使用Min-Min算法;针对轻重负载任务接近的任务集合,采用基于Min-Min和Max-Min的改进任务调度算法。对分配完毕的节点中的关键资源进行重新调度,在满足总体完成时间减少的前提下选择最匹配的任务分配给轻负载资源。CloudSim仿真平台的实验结果表明,所提出的云任务调度优化算法(CTSA-3WD)相比Min-Min,Max-Min及选择调度算法可以有效提高整体资源利用率,提升了用户的服务质量,同时也使得整个系统中的资源达到更好的负载均衡水平。