One-time application of mixed fertilizer formed by the compounding of two controlled-release nitrogen fertilizers(CRUs)with targeted N supply during the periods from transplantation(TS)to panicle initiation(PI)and fro...One-time application of mixed fertilizer formed by the compounding of two controlled-release nitrogen fertilizers(CRUs)with targeted N supply during the periods from transplantation(TS)to panicle initiation(PI)and from PI to heading(HS)is expected to synchronize the double-peak N demand of rice.However,its effects on the yield and N use efficiency(NUE)of labor-intensive double-cropping rice were unknown.Two targeted CRU(CRU_(A)and CRU_(B))were compounded in five ratios(CRU_(A):CRU_(B)=10:0,7:3,5:5,3:7,and 0:10)to form five mixed fertilizers(BBFs):BBF1-5.A field experiment was performed to investigate the characteristics of N supply in early and late seasons under different BBFs and their effects on N uptake,yield,and ammonia volatilization(AV)loss from paddy fields of double-cropping rice.Conventional high-yield fertilization(CK,three split applications of urea)and zero-N treatments were established as controls.The N supply dropped significantly with the increased compound ratio of CRU_(B)during the period from TS to PI,but increased during the period from PI to HS.With the exception of the period from TS to PI in the late rice season,the N uptake of early and late rice maintained close synchronicity with the N supply of BBFs during the double-peak periods.Excessive N supply(BBF1 and BBF2)in the late rice season during the period from TS to PI increased N loss by AV.The effect of BBF on grain yield increase varied widely between seasons,irrespective of year.Among the BBFs,the BBF2 treatment of early rice not only stabilized the spikelets per panicle but also ensured a high number of effective panicles by promoting N uptake during the period from TS to PI and a high grain-filling percentage by appropriately reducing the N supply at the later PI stage,resulting in the highest rice yield.While stabilizing the effective panicle number,the BBF4 treatment of late rice increased the number of spikelets per panicle by promoting N uptake during the period from PI to HS,resulting in the highest rice yield.The two-year aver展开更多
Intracellular bacteria can multiply inside host cells and manipulate their biology,and the efficacy of traditional antibiotic drug therapy for intracellular bacteria is limited by inadequate drug accumulation.Fighting...Intracellular bacteria can multiply inside host cells and manipulate their biology,and the efficacy of traditional antibiotic drug therapy for intracellular bacteria is limited by inadequate drug accumulation.Fighting against these stealthy bacteria has been a longstanding challenge.Here,a system of stimuli-responsive lactoferrin(Lf)nanoparticles is prepared using protein self-assembly technology to deliver broad-spectrum antibiotic rifampicin(Rif)(Rif@Lf NPs)for enhanced infection therapy through targeted elimination of intracellular bacteria.Compared to Rif@BSA NPs,the Rif@Lf NPs can specifically target macrophages infected by bacteria,thus increasing the accumulation of Rif within macrophages.Subsequently,Rif@Lf NPs with positive surface charge further displayed targeted adherence to the bacteria within macrophages and released Rif rapidly in a redoxresponsive manner.Combined with the antibacterial activities of Lf and Rif,the Rif@Lf NPs showed broad-spectrum antibiotic abilities to intracellular bacteria and biofilms.As a result,the Rif@Lf NPs with high safety exhibited excellent therapeutic efficacy in the disease models of subcutaneous infection,sepsis,and bacterial keratitis.Taken together,the antibiotic-loaded Lf nanoparticles present a promising platform to combat pathogen infections through targeted elimination of intracellular bacteria.展开更多
Thromboembolism is the leading cause of cardiovascular mortality.Currently,for the lack of targeting,short half-life,low bioavailability and high bleeding risk of the classical thrombolytic drugs,pharmacological throm...Thromboembolism is the leading cause of cardiovascular mortality.Currently,for the lack of targeting,short half-life,low bioavailability and high bleeding risk of the classical thrombolytic drugs,pharmacological thrombolysis is usually a slow process based on micro-pumping.In addition,frequently monitoring and regulating coagulation functions are also required during(and after)the process of thrombolysis.To address these issues,a targeted thrombolytic and anticoagulation nanoplatform(UCATS-UK)is developed based on upconversion nanoparticles(UCNPs)that can convert 808 or 980 nm near-infrared(NIR)light into UV/blue light.This nanoplatform can target and enrich in the thrombus site.Synergistic thrombolysis and anticoagulation therapy thus could be realized through the controlled release of urokinase(UK)and nitric oxide(NO).Both in vitro and in vivo experiments have confirmed the excellent thrombolytic and anticoagulative capabilities of this multifunctional nanoplatform.Combined with the unique fluorescent imaging capability of UCNPs,this work is expected to contribute to the development of clinical thrombolysis therapy towards an integrated system of imaging,diagnosis and treatment.展开更多
Hydroxyapatite (HAP) is the constituent of calcium phosphate based bone cement and it is extensively used as a bone substitute and drug delivery vehicle in various biomedical applications. In the present study we in...Hydroxyapatite (HAP) is the constituent of calcium phosphate based bone cement and it is extensively used as a bone substitute and drug delivery vehicle in various biomedical applications. In the present study we investigated the release kinetics of ciprofloxacin loaded HAP and analyzed its ability to function as a targeted and sustained release drug carrier, Synthesis of HAP was carried out by combustion method using tartaric acid as a fuel and nitric acid as an oxidizer. Powder XRD and FTIR techniques were employed to characterize the phase purity of the drug carrier and to verify the chemical interaction between the drug and carrier, The synthesized powders were sieve separated to make two different drug carriers with different particle sizes and the surface topography of the pellets of the drug carrier was imaged by AFM. Surface area and porosity of the drug carrier was carried out using surface area analyzer. The in-vitro drug release kinetics was performed in simulated body fuid, at 37.3℃. The amount of ciprofloxacin released is measured using UV-visible spectroscopy following the characteristic Amax of 278 nm. The release saturates around 450 h which indicates that it can be used as a targeted and sustained release carrier for bone infections.展开更多
Neuroinflammation is one of the three important pathological features in neurodegenerative diseases including Parkinson’s disease(PD).The regulation of neuroinflammation can reduce the severity of neurological damage...Neuroinflammation is one of the three important pathological features in neurodegenerative diseases including Parkinson’s disease(PD).The regulation of neuroinflammation can reduce the severity of neurological damage to alleviate diseases.Numerous studies have shown that the phenotype switch of microglia is tightly associated with the nuclear factorκB(NF-κB)-mediated inflammatory pathway.Therefore,the small interfering RNA(siRNA)therapy for downregulating the expression of NF-κB,provides a promising therapeutic strategy for Parkinson’s disease treatments.Considering the brain delivery challenges of siRNA,a sequential targeting inflammation regulation(STIR)delivery system based on poly(amino acid)s is developed to improve the therapeutic effects of Parkinson’s disease treatments.The STIR system sequentially targets the blood–brain barrier and the microglia to enhance the effective concentration of siRNA in the targeted microglia.The results demonstrate that the STIR nanoparticles can transform microglial phenotypes and regulate brain inflammation,thus achieving neuronal recovery and abnormal aggregation ofα-synuclein protein(α-syn)reduction in the treatment of Parkinson’s disease.Herein,this STIR delivery system provides a promising therapeutic platform in PD treatments and has great potential for other neurodegenerative diseases’therapies.展开更多
基金provided by the National Key Research and Development Program of China(2018YFD0300904)Anhui Natural Science Foundation(2008085QC119)Key Fund Project of Anhui Department of Education(KJ2019A0176).
文摘One-time application of mixed fertilizer formed by the compounding of two controlled-release nitrogen fertilizers(CRUs)with targeted N supply during the periods from transplantation(TS)to panicle initiation(PI)and from PI to heading(HS)is expected to synchronize the double-peak N demand of rice.However,its effects on the yield and N use efficiency(NUE)of labor-intensive double-cropping rice were unknown.Two targeted CRU(CRU_(A)and CRU_(B))were compounded in five ratios(CRU_(A):CRU_(B)=10:0,7:3,5:5,3:7,and 0:10)to form five mixed fertilizers(BBFs):BBF1-5.A field experiment was performed to investigate the characteristics of N supply in early and late seasons under different BBFs and their effects on N uptake,yield,and ammonia volatilization(AV)loss from paddy fields of double-cropping rice.Conventional high-yield fertilization(CK,three split applications of urea)and zero-N treatments were established as controls.The N supply dropped significantly with the increased compound ratio of CRU_(B)during the period from TS to PI,but increased during the period from PI to HS.With the exception of the period from TS to PI in the late rice season,the N uptake of early and late rice maintained close synchronicity with the N supply of BBFs during the double-peak periods.Excessive N supply(BBF1 and BBF2)in the late rice season during the period from TS to PI increased N loss by AV.The effect of BBF on grain yield increase varied widely between seasons,irrespective of year.Among the BBFs,the BBF2 treatment of early rice not only stabilized the spikelets per panicle but also ensured a high number of effective panicles by promoting N uptake during the period from TS to PI and a high grain-filling percentage by appropriately reducing the N supply at the later PI stage,resulting in the highest rice yield.While stabilizing the effective panicle number,the BBF4 treatment of late rice increased the number of spikelets per panicle by promoting N uptake during the period from PI to HS,resulting in the highest rice yield.The two-year aver
基金support from the National Natural Science Foundation of China(Nos.22275081,82372117)Guangzhou Science and Technology Bureau(202206010068)China Postdoctoral Science Foundation(2022M711532 and 2022T150302).
文摘Intracellular bacteria can multiply inside host cells and manipulate their biology,and the efficacy of traditional antibiotic drug therapy for intracellular bacteria is limited by inadequate drug accumulation.Fighting against these stealthy bacteria has been a longstanding challenge.Here,a system of stimuli-responsive lactoferrin(Lf)nanoparticles is prepared using protein self-assembly technology to deliver broad-spectrum antibiotic rifampicin(Rif)(Rif@Lf NPs)for enhanced infection therapy through targeted elimination of intracellular bacteria.Compared to Rif@BSA NPs,the Rif@Lf NPs can specifically target macrophages infected by bacteria,thus increasing the accumulation of Rif within macrophages.Subsequently,Rif@Lf NPs with positive surface charge further displayed targeted adherence to the bacteria within macrophages and released Rif rapidly in a redoxresponsive manner.Combined with the antibacterial activities of Lf and Rif,the Rif@Lf NPs showed broad-spectrum antibiotic abilities to intracellular bacteria and biofilms.As a result,the Rif@Lf NPs with high safety exhibited excellent therapeutic efficacy in the disease models of subcutaneous infection,sepsis,and bacterial keratitis.Taken together,the antibiotic-loaded Lf nanoparticles present a promising platform to combat pathogen infections through targeted elimination of intracellular bacteria.
基金the National Natural Science Foundation of China(No.31860263 to Xiaolei Wang,No.82060095 to Weimin Zhou)Key Youth Project of Jiangxi Province(20202ACB216002 to Xiaolei Wang)+1 种基金Natural Science Foundation of Jiangxi Province(911135755018 to Weimin Zhou)Jiangxi Provincial Graduate Innovation Special Fund(YC2020-B053 to Shichen Liu).
文摘Thromboembolism is the leading cause of cardiovascular mortality.Currently,for the lack of targeting,short half-life,low bioavailability and high bleeding risk of the classical thrombolytic drugs,pharmacological thrombolysis is usually a slow process based on micro-pumping.In addition,frequently monitoring and regulating coagulation functions are also required during(and after)the process of thrombolysis.To address these issues,a targeted thrombolytic and anticoagulation nanoplatform(UCATS-UK)is developed based on upconversion nanoparticles(UCNPs)that can convert 808 or 980 nm near-infrared(NIR)light into UV/blue light.This nanoplatform can target and enrich in the thrombus site.Synergistic thrombolysis and anticoagulation therapy thus could be realized through the controlled release of urokinase(UK)and nitric oxide(NO).Both in vitro and in vivo experiments have confirmed the excellent thrombolytic and anticoagulative capabilities of this multifunctional nanoplatform.Combined with the unique fluorescent imaging capability of UCNPs,this work is expected to contribute to the development of clinical thrombolysis therapy towards an integrated system of imaging,diagnosis and treatment.
文摘Hydroxyapatite (HAP) is the constituent of calcium phosphate based bone cement and it is extensively used as a bone substitute and drug delivery vehicle in various biomedical applications. In the present study we investigated the release kinetics of ciprofloxacin loaded HAP and analyzed its ability to function as a targeted and sustained release drug carrier, Synthesis of HAP was carried out by combustion method using tartaric acid as a fuel and nitric acid as an oxidizer. Powder XRD and FTIR techniques were employed to characterize the phase purity of the drug carrier and to verify the chemical interaction between the drug and carrier, The synthesized powders were sieve separated to make two different drug carriers with different particle sizes and the surface topography of the pellets of the drug carrier was imaged by AFM. Surface area and porosity of the drug carrier was carried out using surface area analyzer. The in-vitro drug release kinetics was performed in simulated body fuid, at 37.3℃. The amount of ciprofloxacin released is measured using UV-visible spectroscopy following the characteristic Amax of 278 nm. The release saturates around 450 h which indicates that it can be used as a targeted and sustained release carrier for bone infections.
基金the National Natural Science Foundation of China(Nos:22075289,21875254,31771095,and 52073287).
文摘Neuroinflammation is one of the three important pathological features in neurodegenerative diseases including Parkinson’s disease(PD).The regulation of neuroinflammation can reduce the severity of neurological damage to alleviate diseases.Numerous studies have shown that the phenotype switch of microglia is tightly associated with the nuclear factorκB(NF-κB)-mediated inflammatory pathway.Therefore,the small interfering RNA(siRNA)therapy for downregulating the expression of NF-κB,provides a promising therapeutic strategy for Parkinson’s disease treatments.Considering the brain delivery challenges of siRNA,a sequential targeting inflammation regulation(STIR)delivery system based on poly(amino acid)s is developed to improve the therapeutic effects of Parkinson’s disease treatments.The STIR system sequentially targets the blood–brain barrier and the microglia to enhance the effective concentration of siRNA in the targeted microglia.The results demonstrate that the STIR nanoparticles can transform microglial phenotypes and regulate brain inflammation,thus achieving neuronal recovery and abnormal aggregation ofα-synuclein protein(α-syn)reduction in the treatment of Parkinson’s disease.Herein,this STIR delivery system provides a promising therapeutic platform in PD treatments and has great potential for other neurodegenerative diseases’therapies.