针对全极化二维GTD散射中心模型,首先提出一种二维极化线性变化(polarization linear variationPL)的ESPRIT算法(2D-PL-ESPRIT)用于提取雷达目标散射中心参数;其次,就2D-PL-ESPRIT算法提取目标散射中心的可行性进行了理论分析。相比通...针对全极化二维GTD散射中心模型,首先提出一种二维极化线性变化(polarization linear variationPL)的ESPRIT算法(2D-PL-ESPRIT)用于提取雷达目标散射中心参数;其次,就2D-PL-ESPRIT算法提取目标散射中心的可行性进行了理论分析。相比通过多个单极化通道方法提取散射中心,2D-PL-ESPRIT算法可以有效提高参数估计精度,降低计算复杂度;相比二维极化并行(parallel polarization,PP)的全极化MUSIC方法(2D-PP-MUSIC),2D-PL-ESPRIT算法避免了复杂的二维谱峰搜索以及通过子空间正交方法判断散射类型的步骤,有效降低了运算量。之后,对三种算法进行了复乘计算量的比较以说明2D-PL-ESPRIT算法具有较高的运算效率。最后,通过仿真实验验证了2D-PL-ESPRIT方法用于全极化2D-GTD模型散射中心提取的有效性。展开更多
散射中心是描述雷达目标高频散射机理的重要特征,准确提取雷达目标散射中心参数对解析雷达目标有着极其重要的研究意义。为了提高散射中心参数计算速度,通常将整幅合成孔径雷达(synthetic aperture radar,SAR)图像分解为多个包含散射中...散射中心是描述雷达目标高频散射机理的重要特征,准确提取雷达目标散射中心参数对解析雷达目标有着极其重要的研究意义。为了提高散射中心参数计算速度,通常将整幅合成孔径雷达(synthetic aperture radar,SAR)图像分解为多个包含散射中心的小区域,对每个小区域分别进行特征提取和参数计算。根据雷达目标散射中心的特点,提出了一种基于局部密度聚类的雷达目标散射中心区域分割技术。首先,对雷达图像进行Frost滤波、基于水平集方法(level set method,LSM)的图像分割和面积滤波的一系列图像预处理获得目标感兴趣(region of interest,ROI)区域,然后对预处理后的图像利用局部密度聚类算法检测散射中心并进行区域分割。实验中,采用模拟数据和真实数据对所提方法和传统图像分割算法展开数值实验,实验结果验证了所提方法在雷达目标散射中心区域分割的有效性和优越性。展开更多
文摘针对全极化二维GTD散射中心模型,首先提出一种二维极化线性变化(polarization linear variationPL)的ESPRIT算法(2D-PL-ESPRIT)用于提取雷达目标散射中心参数;其次,就2D-PL-ESPRIT算法提取目标散射中心的可行性进行了理论分析。相比通过多个单极化通道方法提取散射中心,2D-PL-ESPRIT算法可以有效提高参数估计精度,降低计算复杂度;相比二维极化并行(parallel polarization,PP)的全极化MUSIC方法(2D-PP-MUSIC),2D-PL-ESPRIT算法避免了复杂的二维谱峰搜索以及通过子空间正交方法判断散射类型的步骤,有效降低了运算量。之后,对三种算法进行了复乘计算量的比较以说明2D-PL-ESPRIT算法具有较高的运算效率。最后,通过仿真实验验证了2D-PL-ESPRIT方法用于全极化2D-GTD模型散射中心提取的有效性。
文摘散射中心是描述雷达目标高频散射机理的重要特征,准确提取雷达目标散射中心参数对解析雷达目标有着极其重要的研究意义。为了提高散射中心参数计算速度,通常将整幅合成孔径雷达(synthetic aperture radar,SAR)图像分解为多个包含散射中心的小区域,对每个小区域分别进行特征提取和参数计算。根据雷达目标散射中心的特点,提出了一种基于局部密度聚类的雷达目标散射中心区域分割技术。首先,对雷达图像进行Frost滤波、基于水平集方法(level set method,LSM)的图像分割和面积滤波的一系列图像预处理获得目标感兴趣(region of interest,ROI)区域,然后对预处理后的图像利用局部密度聚类算法检测散射中心并进行区域分割。实验中,采用模拟数据和真实数据对所提方法和传统图像分割算法展开数值实验,实验结果验证了所提方法在雷达目标散射中心区域分割的有效性和优越性。