In this paper, using the tanh-function method, we introduce a new approach to solitary wave solutions for solving nonlinear PDEs. The proposed method is based on adding integration constants to the resulting nonlinear...In this paper, using the tanh-function method, we introduce a new approach to solitary wave solutions for solving nonlinear PDEs. The proposed method is based on adding integration constants to the resulting nonlinear ODEs from the nonlinear PDEs using the wave transformation. Also, we use a transformation related to those integration constants. Some examples are considered to find their exact solutions such as KdV- Burgers class and Fisher, Boussinesq and Klein-Gordon equations. Moreover, we discuss the geometric interpretations of the resulting exact solutions.展开更多
The(2+1)-dimensional Chaffee–Infante has a wide range of applications in science and engineering,including nonlinear fiber optics,electromagnetic field waves,signal processing through optical fibers,plasma physics,co...The(2+1)-dimensional Chaffee–Infante has a wide range of applications in science and engineering,including nonlinear fiber optics,electromagnetic field waves,signal processing through optical fibers,plasma physics,coastal engineering,fluid dynamics and is particularly useful for modeling ion-acoustic waves in plasma and sound waves.In this paper,this equation is investigated and analyzed using two effective schemes.The well-known tanh-coth and sine-cosine function schemes are employed to establish analytical solutions for the equation under consideration.The breather wave solutions are derived using the Cole–Hopf transformation.In addition,by means of new conservation theorem,we construct conservation laws(CLs)for the governing equation by means of Lie–Bäcklund symmetries.The novel characteristics for the(2+1)-dimensional Chaffee–Infante equation obtained in this work can be of great importance in nonlinear sciences and ocean engineering.展开更多
The present paper deals with two reliable efficient methods viz.tanh-sech method and modified Kudryashov method,which are used to solve time-fractional nonlinear evolution equation.For delineating the legitimacy of pr...The present paper deals with two reliable efficient methods viz.tanh-sech method and modified Kudryashov method,which are used to solve time-fractional nonlinear evolution equation.For delineating the legitimacy of proposed methods,we employ it to the time-fractional fifth-order modified Sawada-Kotera equations.As a consequence,we effectively obtained more new exact solutions for time-fractional fifth-order modified Sawada-Kotera equation.We have also presented the numerical simulations for time-fractional fifth-order modified Sawada-Kotera equation by means of three dimensional plots.展开更多
In this paper, we apply the tanh-coth method and traveling wave transformation method for solving Gardner equations, including (1 + 1)-Gardner and (2 + 1)- Gardner equations. The tanh-coth method proved to be reliable...In this paper, we apply the tanh-coth method and traveling wave transformation method for solving Gardner equations, including (1 + 1)-Gardner and (2 + 1)- Gardner equations. The tanh-coth method proved to be reliable and effective in handling a large number of nonlinear dispersive and disperse equations. Through tanh-coth method, we get analytical expressions of soliton solutions of Gardner equations. The one-soliton solution is characterized by an infinite wing or infinite tail.展开更多
The consistent tanh expansion(CTE) method is applied to the(2+1)-dimensional Boussinesq equation which describes the propagation of ultrashort pulse in quadratic nonlinear medium. The interaction solutions are explici...The consistent tanh expansion(CTE) method is applied to the(2+1)-dimensional Boussinesq equation which describes the propagation of ultrashort pulse in quadratic nonlinear medium. The interaction solutions are explicitly given, such as the bright soliton-periodic wave interaction solution, variational amplitude periodic wave solution,and kink-periodic wave interaction solution. We also obtain the bright soliton solution, kind bright soliton solution, double well dark soliton solution and kink-bright soliton interaction solution by using Painlev′e truncated expansion method.And we investigate interactive properties of solitons and periodic waves.展开更多
In this paper, the dispersive long wave equation is studied by Lie symmetry group theory. Firstly, the Lie symmetries of this system are calculated. Secondly, one dimensional optimal systems of Lie algebra and all the...In this paper, the dispersive long wave equation is studied by Lie symmetry group theory. Firstly, the Lie symmetries of this system are calculated. Secondly, one dimensional optimal systems of Lie algebra and all the symmetry reductions are obtained. Finally, based on the power series method and the extended Tanh function method, some new explicit solutions of this system are constructed.展开更多
First, two tanh-coth type solutions of a class of nonlinear wave equation are derived by using a simplified modified extended tanh-function method. Then, further analysis to some tanh-coth type solutions of nonlinear ...First, two tanh-coth type solutions of a class of nonlinear wave equation are derived by using a simplified modified extended tanh-function method. Then, further analysis to some tanh-coth type solutions of nonlinear evolution equations are given. The results show that when balance number m is one or two, the tanh-eoth type solutions obtained by the modified extended tanh-funetion method can be obtained by using the hyperbolic-function method.展开更多
In this paper,we consider the wick-type Kd V-Burgers equation with variable coefficients. By using Tanh method with the aid of Hermite transformation, we deduce the exact solutions which include hyperbolic-exponential...In this paper,we consider the wick-type Kd V-Burgers equation with variable coefficients. By using Tanh method with the aid of Hermite transformation, we deduce the exact solutions which include hyperbolic-exponential, trigonometric-exponential and exponential function solutions for the considered equation.展开更多
We combine the tanh function method with the symmetry group method to construct new type of solutions of Davey-Stewartson equation and implemente it in a computer algebraic system. As a result, some new types of solut...We combine the tanh function method with the symmetry group method to construct new type of solutions of Davey-Stewartson equation and implemente it in a computer algebraic system. As a result, some new types of solutions are obtained. This method is also applied to other differential equations if the nonlinear evolution equations admit nontrivial one-parameter group of transformation.展开更多
文摘In this paper, using the tanh-function method, we introduce a new approach to solitary wave solutions for solving nonlinear PDEs. The proposed method is based on adding integration constants to the resulting nonlinear ODEs from the nonlinear PDEs using the wave transformation. Also, we use a transformation related to those integration constants. Some examples are considered to find their exact solutions such as KdV- Burgers class and Fisher, Boussinesq and Klein-Gordon equations. Moreover, we discuss the geometric interpretations of the resulting exact solutions.
文摘The(2+1)-dimensional Chaffee–Infante has a wide range of applications in science and engineering,including nonlinear fiber optics,electromagnetic field waves,signal processing through optical fibers,plasma physics,coastal engineering,fluid dynamics and is particularly useful for modeling ion-acoustic waves in plasma and sound waves.In this paper,this equation is investigated and analyzed using two effective schemes.The well-known tanh-coth and sine-cosine function schemes are employed to establish analytical solutions for the equation under consideration.The breather wave solutions are derived using the Cole–Hopf transformation.In addition,by means of new conservation theorem,we construct conservation laws(CLs)for the governing equation by means of Lie–Bäcklund symmetries.The novel characteristics for the(2+1)-dimensional Chaffee–Infante equation obtained in this work can be of great importance in nonlinear sciences and ocean engineering.
文摘The present paper deals with two reliable efficient methods viz.tanh-sech method and modified Kudryashov method,which are used to solve time-fractional nonlinear evolution equation.For delineating the legitimacy of proposed methods,we employ it to the time-fractional fifth-order modified Sawada-Kotera equations.As a consequence,we effectively obtained more new exact solutions for time-fractional fifth-order modified Sawada-Kotera equation.We have also presented the numerical simulations for time-fractional fifth-order modified Sawada-Kotera equation by means of three dimensional plots.
文摘In this paper, we apply the tanh-coth method and traveling wave transformation method for solving Gardner equations, including (1 + 1)-Gardner and (2 + 1)- Gardner equations. The tanh-coth method proved to be reliable and effective in handling a large number of nonlinear dispersive and disperse equations. Through tanh-coth method, we get analytical expressions of soliton solutions of Gardner equations. The one-soliton solution is characterized by an infinite wing or infinite tail.
基金Supported by the National Natural Science Foundation of Zhejiang Province under Grant No.LZ15A050001the National Natural Science Foundation of China under Grant No.11675146
文摘The consistent tanh expansion(CTE) method is applied to the(2+1)-dimensional Boussinesq equation which describes the propagation of ultrashort pulse in quadratic nonlinear medium. The interaction solutions are explicitly given, such as the bright soliton-periodic wave interaction solution, variational amplitude periodic wave solution,and kink-periodic wave interaction solution. We also obtain the bright soliton solution, kind bright soliton solution, double well dark soliton solution and kink-bright soliton interaction solution by using Painlev′e truncated expansion method.And we investigate interactive properties of solitons and periodic waves.
文摘In this paper, the dispersive long wave equation is studied by Lie symmetry group theory. Firstly, the Lie symmetries of this system are calculated. Secondly, one dimensional optimal systems of Lie algebra and all the symmetry reductions are obtained. Finally, based on the power series method and the extended Tanh function method, some new explicit solutions of this system are constructed.
基金Supported by the Natural Science Foundation of China under Grant No.11071209
文摘First, two tanh-coth type solutions of a class of nonlinear wave equation are derived by using a simplified modified extended tanh-function method. Then, further analysis to some tanh-coth type solutions of nonlinear evolution equations are given. The results show that when balance number m is one or two, the tanh-eoth type solutions obtained by the modified extended tanh-funetion method can be obtained by using the hyperbolic-function method.
基金Supported by the National Natural Science Foundation of China(11271008, 61072147)
文摘In this paper,we consider the wick-type Kd V-Burgers equation with variable coefficients. By using Tanh method with the aid of Hermite transformation, we deduce the exact solutions which include hyperbolic-exponential, trigonometric-exponential and exponential function solutions for the considered equation.
基金The project partially supported by the State Key Basic Research Program of China under Grant No. 2004CB318000
文摘We combine the tanh function method with the symmetry group method to construct new type of solutions of Davey-Stewartson equation and implemente it in a computer algebraic system. As a result, some new types of solutions are obtained. This method is also applied to other differential equations if the nonlinear evolution equations admit nontrivial one-parameter group of transformation.