Several automotive parts such as door panels have been manufactured by using load-adapted blanks for crash optimization and weight minimization. Recently, Tailor Rolled Blanks (TRB) has been introduced to remove the d...Several automotive parts such as door panels have been manufactured by using load-adapted blanks for crash optimization and weight minimization. Recently, Tailor Rolled Blanks (TRB) has been introduced to remove the disadvantages of a welding process which was used in joining panel components. TRB offers better structural design capabilities due to the seamless transitions on the panels with different thicknesses. In spite of the advantages of the process, TRB leaves internal stresses in the panel. This residual stresses lower the formability of Tailor Rolled Blanked (TRBed) parts and cause cracks near severe curvature during subsequent forming processes. In this research, the residual stresses of TRBed Al5J32-T4 sheets were studied by X-ray stress analysis, and also microstructure was observed along the rolling direction. In addition, heat treatment was done after TRB process in order to compare the residual stresses to that of the TRBed sheets before the heat treatment.展开更多
Variable gauge rolling (VGR) is a new technology to produce flat products with different thicknesses (FDT), which could be used to replace conventional fiat products in order to save metals and reduce structure ma...Variable gauge rolling (VGR) is a new technology to produce flat products with different thicknesses (FDT), which could be used to replace conventional fiat products in order to save metals and reduce structure mass. The method of VGR was introduced for investigating new problems in rolling theory of VGR, and the new formulas for calculating parameters of VGR were proposed. Besides, some results of numerical simulation by finite elemen~ method were described. As an example, the products applications of FDT in bridge construction, ship building and auto manufacturing were presented. Finally, the prospects for VGR and FDT were discussed.展开更多
Variable gauge rolling (VGR) is a new technology for producing the materials which have the advantage of lightweight due to optimized thickness according to load distribution. The new progresses in the theoretical r...Variable gauge rolling (VGR) is a new technology for producing the materials which have the advantage of lightweight due to optimized thickness according to load distribution. The new progresses in the theoretical research and application of VGR are reviewed in this paper. Two basic equations, VGR-f and VGR-s, were deduced. The former is a new differential equation of force equilibrium, and the latter is a new form of formula for the law of mass conservation. Both of them provide a new base for the development of VGR analysis. As the examples of VGR's application, tailor rolled blank (TRB) and longitudinal profile (LP) plate are introduced. Now TRBs are only produced in Germany and China, and have been used in the automotive manufacturing to play an important role in lightweight design. LP plates have been used in shipbuilding and bridge construction, and promised a bright prospect in reducing construction weight. In addition, new technologies and applications of VGR emerge constantly. Tailor welded strips and tailor rolled strips with variable thickness across the width can be used for progressive die and roll forming. The 3D profiled blank can be obtained by two-step rolling process. Tailor tubes witli the variable wail thickness are an efficient way to reduce the weight. The blank with tailored thickness and mechanical property is also under development. Above products based on the tailored ideas provide a new materials-warehouse for the designers to select so as to meet the needs of weight reducing and material saving.展开更多
Residual stress developed during the rolling process of tailor rolled blank (TRB) can affect the springback of finished parts considerably. Springback characteristics of unannealed and annealed TRBs were investigate...Residual stress developed during the rolling process of tailor rolled blank (TRB) can affect the springback of finished parts considerably. Springback characteristics of unannealed and annealed TRBs were investigated by means of numerical simulation and experiments taking U-Channel as an example. TRBs were annealed by the annealing process (700 ℃, holding time 10 h), then stamping and springback processes of unannealed and annealed TRBs were simulated, and corresponding experiments were also carried out. Effects of the transition zone length, the blank thickness, the friction coefficient and the die clearance on the springback of TRB were analyzed. The results demonstrate that the springback of TRB annealed at 700 ~C for 10 h re- duces significantly. For unannealed and annealed U-Channels, the springback of TRB U-Channel is in direct proportion to the die clearance and is in inverse proportion to the transition zone length, the blank thickness and the friction coefficient. Spring- backs of the thinner monolithic (uniform thickness) blank, the thinner side of TRB, the thicker side of TRB and the thicker monolithic blank are sorted in descending order.展开更多
基金This work was financiallysupportedbythe Research Grants(NN-8501)from Ministry ofCommerce,Industry and Energyin Republic ofKorea.
文摘Several automotive parts such as door panels have been manufactured by using load-adapted blanks for crash optimization and weight minimization. Recently, Tailor Rolled Blanks (TRB) has been introduced to remove the disadvantages of a welding process which was used in joining panel components. TRB offers better structural design capabilities due to the seamless transitions on the panels with different thicknesses. In spite of the advantages of the process, TRB leaves internal stresses in the panel. This residual stresses lower the formability of Tailor Rolled Blanked (TRBed) parts and cause cracks near severe curvature during subsequent forming processes. In this research, the residual stresses of TRBed Al5J32-T4 sheets were studied by X-ray stress analysis, and also microstructure was observed along the rolling direction. In addition, heat treatment was done after TRB process in order to compare the residual stresses to that of the TRBed sheets before the heat treatment.
基金Item Sponsored by National Natural Science Foundation of China(50634030,50974039)
文摘Variable gauge rolling (VGR) is a new technology to produce flat products with different thicknesses (FDT), which could be used to replace conventional fiat products in order to save metals and reduce structure mass. The method of VGR was introduced for investigating new problems in rolling theory of VGR, and the new formulas for calculating parameters of VGR were proposed. Besides, some results of numerical simulation by finite elemen~ method were described. As an example, the products applications of FDT in bridge construction, ship building and auto manufacturing were presented. Finally, the prospects for VGR and FDT were discussed.
基金supported by the National Natural Science Foundation of China (Nos. 51034009, 51374069 and 51174249).
文摘Variable gauge rolling (VGR) is a new technology for producing the materials which have the advantage of lightweight due to optimized thickness according to load distribution. The new progresses in the theoretical research and application of VGR are reviewed in this paper. Two basic equations, VGR-f and VGR-s, were deduced. The former is a new differential equation of force equilibrium, and the latter is a new form of formula for the law of mass conservation. Both of them provide a new base for the development of VGR analysis. As the examples of VGR's application, tailor rolled blank (TRB) and longitudinal profile (LP) plate are introduced. Now TRBs are only produced in Germany and China, and have been used in the automotive manufacturing to play an important role in lightweight design. LP plates have been used in shipbuilding and bridge construction, and promised a bright prospect in reducing construction weight. In addition, new technologies and applications of VGR emerge constantly. Tailor welded strips and tailor rolled strips with variable thickness across the width can be used for progressive die and roll forming. The 3D profiled blank can be obtained by two-step rolling process. Tailor tubes witli the variable wail thickness are an efficient way to reduce the weight. The blank with tailored thickness and mechanical property is also under development. Above products based on the tailored ideas provide a new materials-warehouse for the designers to select so as to meet the needs of weight reducing and material saving.
基金supported by the National Natural Science Foundation of China(Nos.10932003,50974039and50872126)the National Basic Research Program of China(No.2010CB832700)the Fundamental Research Funds for the Central Universities(893324,DUT11ZD202)
文摘Residual stress developed during the rolling process of tailor rolled blank (TRB) can affect the springback of finished parts considerably. Springback characteristics of unannealed and annealed TRBs were investigated by means of numerical simulation and experiments taking U-Channel as an example. TRBs were annealed by the annealing process (700 ℃, holding time 10 h), then stamping and springback processes of unannealed and annealed TRBs were simulated, and corresponding experiments were also carried out. Effects of the transition zone length, the blank thickness, the friction coefficient and the die clearance on the springback of TRB were analyzed. The results demonstrate that the springback of TRB annealed at 700 ~C for 10 h re- duces significantly. For unannealed and annealed U-Channels, the springback of TRB U-Channel is in direct proportion to the die clearance and is in inverse proportion to the transition zone length, the blank thickness and the friction coefficient. Spring- backs of the thinner monolithic (uniform thickness) blank, the thinner side of TRB, the thicker side of TRB and the thicker monolithic blank are sorted in descending order.