This paper is concerned with the order of the solutions of systems of high-order complex algebraic differential equations.By means of Zalcman Lemma,the systems of equations of[1]is extended to more general form.
A type of complex systems under both random influence and memory effects is considered. The systems are modeled by a class of nonlinear stochastic delay-integrodifferential equations. A delay-dependent stability crite...A type of complex systems under both random influence and memory effects is considered. The systems are modeled by a class of nonlinear stochastic delay-integrodifferential equations. A delay-dependent stability criterion for such equations is derived under the condition that the time lags are small enough. Numerical simulations are presented to illustrate the theoretical result.展开更多
基金Supported by the Natural Science Foundation of Guangdong Province(04010474) Supported by the Foundation of the Education Department of Anhui Province for Outstanding Young Teachers in University(2011SQRL172)
文摘This paper is concerned with the order of the solutions of systems of high-order complex algebraic differential equations.By means of Zalcman Lemma,the systems of equations of[1]is extended to more general form.
基金supported by NSFC (10871078)863 Program of China (2009AA044501)+1 种基金an Open Research Grant of the State Key Laboratory for Nonlinear Mechanics of CASGraduates' Innovation Fund of HUST (HF-08-02-2011-011)
文摘A type of complex systems under both random influence and memory effects is considered. The systems are modeled by a class of nonlinear stochastic delay-integrodifferential equations. A delay-dependent stability criterion for such equations is derived under the condition that the time lags are small enough. Numerical simulations are presented to illustrate the theoretical result.