The corrosion inhibition of a kind of green scale inhibitor, polyepoxysuccinic acid (PESA) was studied based on dynamic experiments. In addition, the synergistic effect among PESA, Zn 2+ and sodium gluconate was also ...The corrosion inhibition of a kind of green scale inhibitor, polyepoxysuccinic acid (PESA) was studied based on dynamic experiments. In addition, the synergistic effect among PESA, Zn 2+ and sodium gluconate was also investigated. According to the experimental data, when only PESA is used, it had fairly good effect on steel. The synergy between PESA and Zn 2+ or sodium gluconate was poor. However, the synergistic effect of PESA, Zn 2+ and sodium gluconate is very good. Further experiments show that the corrosion inhibition of PESA is mainly affected by oxygen atom inserted.展开更多
: In order to make clear the functions of plant volatile organic compounds (VOCs) on bacteriostasis and air decontamination, we analyzed the composition and content of VOCs in Pinus tabulaeformis Carr., P. bungeana Zu...: In order to make clear the functions of plant volatile organic compounds (VOCs) on bacteriostasis and air decontamination, we analyzed the composition and content of VOCs in Pinus tabulaeformis Carr., P. bungeana Zucc., Sabina chinensis Antoine, Picea koraiensis Nakai, and Cedrus deodara G. Don under near-natural conditions using the thermal-desorption cold trap gas chromatography/mass spectrometer technique. The effects of the VOCs on airborne microorganisms were investigated using the method of natural sedimentation. Results showed that the major VOCs were as follows: limonene, β-pinene, α-pinene, and α-caryophyllene in Pinus tabulaeformis and P. bungeana; limonene, borneol acetate, β-pinene, myrcene, and tricylene in S. chinensis; limonene, α-pinene, myrcene, camphene, and β-pinene in Picea koraiensis; and limonene, 2, (10)-pinene, α-pinene, and myrcene in C. deodara. These VOCs and the corresponding foliar extracts inhibited the growth of bacteria and stimulated the growth of fungi. Experimental data using monomers of the VOCs demonstrated that limonene, β-pinene, and three aldehydes could significantly inhibit bacterial growth, suggesting an inhibitory effect of VOCs on the growth of airborne microorganisms in the five conifer species. The bacteriostasis and air-decontaminating effects of plant VOCs are further discussed in terms of their chemical composition.展开更多
文摘The corrosion inhibition of a kind of green scale inhibitor, polyepoxysuccinic acid (PESA) was studied based on dynamic experiments. In addition, the synergistic effect among PESA, Zn 2+ and sodium gluconate was also investigated. According to the experimental data, when only PESA is used, it had fairly good effect on steel. The synergy between PESA and Zn 2+ or sodium gluconate was poor. However, the synergistic effect of PESA, Zn 2+ and sodium gluconate is very good. Further experiments show that the corrosion inhibition of PESA is mainly affected by oxygen atom inserted.
文摘: In order to make clear the functions of plant volatile organic compounds (VOCs) on bacteriostasis and air decontamination, we analyzed the composition and content of VOCs in Pinus tabulaeformis Carr., P. bungeana Zucc., Sabina chinensis Antoine, Picea koraiensis Nakai, and Cedrus deodara G. Don under near-natural conditions using the thermal-desorption cold trap gas chromatography/mass spectrometer technique. The effects of the VOCs on airborne microorganisms were investigated using the method of natural sedimentation. Results showed that the major VOCs were as follows: limonene, β-pinene, α-pinene, and α-caryophyllene in Pinus tabulaeformis and P. bungeana; limonene, borneol acetate, β-pinene, myrcene, and tricylene in S. chinensis; limonene, α-pinene, myrcene, camphene, and β-pinene in Picea koraiensis; and limonene, 2, (10)-pinene, α-pinene, and myrcene in C. deodara. These VOCs and the corresponding foliar extracts inhibited the growth of bacteria and stimulated the growth of fungi. Experimental data using monomers of the VOCs demonstrated that limonene, β-pinene, and three aldehydes could significantly inhibit bacterial growth, suggesting an inhibitory effect of VOCs on the growth of airborne microorganisms in the five conifer species. The bacteriostasis and air-decontaminating effects of plant VOCs are further discussed in terms of their chemical composition.