The robustness and breakup of spiral wave in a two-dimensional lattice networks of neurons are investigated. The effect of small- world type connection is often simplified with local regular connection and the long-ra...The robustness and breakup of spiral wave in a two-dimensional lattice networks of neurons are investigated. The effect of small- world type connection is often simplified with local regular connection and the long-range connection with certain probability. The network effect on the development of spiral wave can be better described by local regular connection and changeable long-range connection probability than fixed long-range connection probability because the long-range probability could be changeable in realistic biological system. The effect from the changeable probability for long-range connection is simplified by multiplicative noise. At first, a stable rotating spiral wave is developed by using appropriate initial values, parameters and no-flux boundary conditions, and then the effect of networks is investigated. Extensive numerical studies show that spiral wave keeps its alive and robust when the intensity of multiplicative noise is below a certain threshold, otherwise, the breakup of spiral wave occurs. A statistical factor of synchronization in two-dimensional array is defined to study the phase transition of spiral wave by checking the membrane potentials of all neurons corresponding to the critical parameters(the intensity of noise or forcing current)in the curve for factor of synchronization. The Hindmarsh-Rose model is investigated, the Hodgkin-Huxley neuron model in the presence of the channel noise is also studied to check the model independence of our conclusions. And it is found that breakup of spiral wave is easier to be induced by the multiplicative noise in presence of channel noise.展开更多
Multi-phase machines are so attractive for electrical machine designers because of their valuable advantages such as high reliability and fault tolerant ability.Meanwhile,fractional slot concentrated windings(FSCW)are...Multi-phase machines are so attractive for electrical machine designers because of their valuable advantages such as high reliability and fault tolerant ability.Meanwhile,fractional slot concentrated windings(FSCW)are well known because of short end winding length,simple structure,field weakening sufficiency,fault tolerant capability and higher slot fill factor.The five-phase machines equipped with FSCW,are very good candidates for the purpose of designing motors for high reliable applications,like electric cars,major transporting buses,high speed trains and massive trucks.But,in comparison to the general distributed windings,the FSCWs contain high magnetomotive force(MMF)space harmonic contents,which cause unwanted effects on the machine ability,such as localized iron saturation and core losses.This manuscript introduces several new five-phase fractional slot winding layouts,by the means of slot shifting concept in order to design the new types of synchronous reluctance motors(SynRels).In order to examine the proposed winding’s performances,three sample machines are designed as case studies,and analytical study and finite element analysis(FEA)is used for validation.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 10747005, 30670529 and 10875049)the Key Project of MOE (Grant No. 108096)the Natural Science of Lanzhou University of Technology (Grant No. Q200706)
文摘The robustness and breakup of spiral wave in a two-dimensional lattice networks of neurons are investigated. The effect of small- world type connection is often simplified with local regular connection and the long-range connection with certain probability. The network effect on the development of spiral wave can be better described by local regular connection and changeable long-range connection probability than fixed long-range connection probability because the long-range probability could be changeable in realistic biological system. The effect from the changeable probability for long-range connection is simplified by multiplicative noise. At first, a stable rotating spiral wave is developed by using appropriate initial values, parameters and no-flux boundary conditions, and then the effect of networks is investigated. Extensive numerical studies show that spiral wave keeps its alive and robust when the intensity of multiplicative noise is below a certain threshold, otherwise, the breakup of spiral wave occurs. A statistical factor of synchronization in two-dimensional array is defined to study the phase transition of spiral wave by checking the membrane potentials of all neurons corresponding to the critical parameters(the intensity of noise or forcing current)in the curve for factor of synchronization. The Hindmarsh-Rose model is investigated, the Hodgkin-Huxley neuron model in the presence of the channel noise is also studied to check the model independence of our conclusions. And it is found that breakup of spiral wave is easier to be induced by the multiplicative noise in presence of channel noise.
文摘Multi-phase machines are so attractive for electrical machine designers because of their valuable advantages such as high reliability and fault tolerant ability.Meanwhile,fractional slot concentrated windings(FSCW)are well known because of short end winding length,simple structure,field weakening sufficiency,fault tolerant capability and higher slot fill factor.The five-phase machines equipped with FSCW,are very good candidates for the purpose of designing motors for high reliable applications,like electric cars,major transporting buses,high speed trains and massive trucks.But,in comparison to the general distributed windings,the FSCWs contain high magnetomotive force(MMF)space harmonic contents,which cause unwanted effects on the machine ability,such as localized iron saturation and core losses.This manuscript introduces several new five-phase fractional slot winding layouts,by the means of slot shifting concept in order to design the new types of synchronous reluctance motors(SynRels).In order to examine the proposed winding’s performances,three sample machines are designed as case studies,and analytical study and finite element analysis(FEA)is used for validation.