The main purpose of this paper is to provide a systematic geometric frame for generalized controlled Hamiltonian systems. The pseudo-Poisson manifold and the ω-manifold are proposed as the statespace of the generaliz...The main purpose of this paper is to provide a systematic geometric frame for generalized controlled Hamiltonian systems. The pseudo-Poisson manifold and the ω-manifold are proposed as the statespace of the generalized controlled Hamiltonian systems. A Lie group, calledN-group, and its Lie algebra, calledN-algebra, are introduced for the structure analysis of the systems. Some properties, including spectrum, structure-preservation, etc. are investigated. As an example the theoretical results are applied to power systems. The stabilization of excitation systems is investigated.展开更多
For the stability requirement of numerical resultants, the mathematical theory of classical mixed methods are relatively complex. However, generalized mixed methods are automatically stable, and their building process...For the stability requirement of numerical resultants, the mathematical theory of classical mixed methods are relatively complex. However, generalized mixed methods are automatically stable, and their building process is simple and straightforward. In this paper, based on the seminal idea of the generalized mixed methods, a simple, stable, and highly accurate 8-node noncompatible symplectic element(NCSE8) was developed by the combination of the modified Hellinger-Reissner mixed variational principle and the minimum energy principle. To ensure the accuracy of in-plane stress results, a simultaneous equation approach was also suggested. Numerical experimentation shows that the accuracy of stress results of NCSE8 are nearly the same as that of displacement methods, and they are in good agreement with the exact solutions when the mesh is relatively fine. NCSE8 has advantages of the clearing concept, easy calculation by a finite element computer program, higher accuracy and wide applicability for various linear elasticity compressible and nearly incompressible material problems. It is possible that NCSE8 becomes even more advantageous for the fracture problems due to its better accuracy of stresses.展开更多
The separation of variables is employed to solve Hamiltonian dual form of eigenvalue problem for transverse free vibrations of thin plates, and formulation of the natural mode in closed form is performed. The closed-f...The separation of variables is employed to solve Hamiltonian dual form of eigenvalue problem for transverse free vibrations of thin plates, and formulation of the natural mode in closed form is performed. The closed-form natural mode satisfies the governing equation of the eigenvalue problem of thin plate exactly and is applicable for any types of boundary conditions. With all combinations of simplysupported (S) and clamped (C) boundary conditions applied to the natural mode, the mode shapes are obtained uniquely and two eigenvalue equations are derived with respect to two spatial coordinates, with the aid of which the normal modes and frequencies are solved exactly. It was believed that the exact eigensolutions for cases SSCC, SCCC and CCCC were unable to be obtained, however, they are successfully found in this paper. Comparisons between the present results and the FEM results validate the present exact solutions, which can thus be taken as the benchmark for verifying different approximate approaches.展开更多
By virtue of the new technique of performing integration over Dirac's ket-bra operators, we ex- plore quantum optical version of classical optical transformations such as optical Fresnel transform, Hankel transform, ...By virtue of the new technique of performing integration over Dirac's ket-bra operators, we ex- plore quantum optical version of classical optical transformations such as optical Fresnel transform, Hankel transform, fractional Fourier transform, Wigner transform, wavelet transform and Fresnel- Hadmard combinatorial transform etc. In this way one may gain benefit for developing classical optics theory from the research in quantum optics, or vice-versa. We cannot only find some new quantum mechanical unitary operators which correspond to the known optical transformations, de- riving a new theorem for calculating quantum tomogram of density operators, but also can reveal some new classical optical transformations. For examples, we find the generalized Fresnel opera- tor (GFO) to correspond to the generalized Fresnel transform (GFT) in classical optics. We derive GFO's normal product form and its canonical coherent state representation and find that GFO is the loyal representation of symplectic group multiplication rule. We show that GFT is just the transformation matrix element of GFO in the coordinate representation such that two successive GFTs is still a GFT. The ABCD rule of the Gaussian beam propagation is directly demonstrated in the context of quantum optics. Especially, the introduction of quantum mechanical entangled state representations opens up a new area in finding new classical optical transformations. The complex wavelet transform and the condition of mother wavelet are studied in the context of quantum op- tics too. Throughout our discussions, the coherent state, the entangled state representation of the two-mode squeezing operators and the technique of integration within an ordered product (IWOP) of operators are fully used. All these have confirmed Dirac's assertion: "...for a quantum dynamic system that has a classical analogue, unitary transformation in the quantum theory is the analogue of contact transformation in the classical theory".展开更多
A universal symplectic structure for a Newtonian system including nonconservative cases can be constructed in the framework of Birkhoffian generalization of Hamiltonian mechanics. In this paper the symplectic geometry...A universal symplectic structure for a Newtonian system including nonconservative cases can be constructed in the framework of Birkhoffian generalization of Hamiltonian mechanics. In this paper the symplectic geometry structure of Birkhoffian system is discussed, then the symplecticity of Birkhoffian phase flow is presented. Based on these properties we give a way to construct symplectic schemes for Birkhoffian systems by using the generating function method.展开更多
In the previous papers I and II, we have studied the difference discrete variational principle and the Euler?Lagrange cohomology in the framework of multi-parameter differential approach. We have gotten the difference...In the previous papers I and II, we have studied the difference discrete variational principle and the Euler?Lagrange cohomology in the framework of multi-parameter differential approach. We have gotten the difference discrete Euler?Lagrange equations and canonical ones for the difference discrete versions of classical mechanics and field theory as well as the difference discrete versions for the Euler?Lagrange cohomology and applied them to get the necessary and sufficient condition for the symplectic or multisymplectic geometry preserving properties in both the Lagrangian and Hamiltonian formalisms. In this paper, we apply the difference discrete variational principle and Euler?Lagrange cohomological approach directly to the symplectic and multisymplectic algorithms. We will show that either Hamiltonian schemes or Lagrangian ones in both the symplectic and multisymplectic algorithms are variational integrators and their difference discrete symplectic structure-preserving properties can always be established not only in the solution space but also in the function space if and only if the related closed Euler?Lagrange cohomological conditions are satisfied.展开更多
Based on the exact analytical solution of ordinary differential equations, a truncation of the Taylor series of the exact solution to the Nth order leads to the Nth order algebraic dynamics algorithm. A detailed numer...Based on the exact analytical solution of ordinary differential equations, a truncation of the Taylor series of the exact solution to the Nth order leads to the Nth order algebraic dynamics algorithm. A detailed numerical comparison is presented with Runge-Kutta algorithm and symplectic geometric algorithm for 12 test models. The results show that the algebraic dynamics algorithm can better preserve both geometrical and dynamical fidelity of a dynamical system at a controllable precision, and it can solve the problem of algorithm-induced dissipation for the Runge-Kutta algorithm and the problem of algorithm-induced phase shift for the symplectic geometric algorithm.展开更多
Here we introduce generalized momentum and coordinate to transform seismic wave displacement equations into Hamiltonian system.We define the Lie operators associated with kinetic and potential energy,and construct a n...Here we introduce generalized momentum and coordinate to transform seismic wave displacement equations into Hamiltonian system.We define the Lie operators associated with kinetic and potential energy,and construct a new kind of second order symplectic scheme,which is extremely suitable for high efficient and long-term seismic wave simulations.Three sets of optimal coefficients are obtained based on the principle of minimum truncation error.We investigate the stability conditions for elastic wave simulation in homogeneous media.These newly developed symplectic schemes are compared with common symplectic schemes to verify the high precision and efficiency in theory and numerical experiments.One of the schemes presented here is compared with the classical Newmark algorithm and third order symplectic scheme to test the long-term computational ability.The scheme gets the same synthetic surface seismic records and single channel record as third order symplectic scheme in the seismic modeling in the heterogeneous model.展开更多
文摘The main purpose of this paper is to provide a systematic geometric frame for generalized controlled Hamiltonian systems. The pseudo-Poisson manifold and the ω-manifold are proposed as the statespace of the generalized controlled Hamiltonian systems. A Lie group, calledN-group, and its Lie algebra, calledN-algebra, are introduced for the structure analysis of the systems. Some properties, including spectrum, structure-preservation, etc. are investigated. As an example the theoretical results are applied to power systems. The stabilization of excitation systems is investigated.
基金supported by the National Natural Science Foundations of China (Grant 11502286)
文摘For the stability requirement of numerical resultants, the mathematical theory of classical mixed methods are relatively complex. However, generalized mixed methods are automatically stable, and their building process is simple and straightforward. In this paper, based on the seminal idea of the generalized mixed methods, a simple, stable, and highly accurate 8-node noncompatible symplectic element(NCSE8) was developed by the combination of the modified Hellinger-Reissner mixed variational principle and the minimum energy principle. To ensure the accuracy of in-plane stress results, a simultaneous equation approach was also suggested. Numerical experimentation shows that the accuracy of stress results of NCSE8 are nearly the same as that of displacement methods, and they are in good agreement with the exact solutions when the mesh is relatively fine. NCSE8 has advantages of the clearing concept, easy calculation by a finite element computer program, higher accuracy and wide applicability for various linear elasticity compressible and nearly incompressible material problems. It is possible that NCSE8 becomes even more advantageous for the fracture problems due to its better accuracy of stresses.
基金supported by the National Natural Science Foundation of China (10772014)
文摘The separation of variables is employed to solve Hamiltonian dual form of eigenvalue problem for transverse free vibrations of thin plates, and formulation of the natural mode in closed form is performed. The closed-form natural mode satisfies the governing equation of the eigenvalue problem of thin plate exactly and is applicable for any types of boundary conditions. With all combinations of simplysupported (S) and clamped (C) boundary conditions applied to the natural mode, the mode shapes are obtained uniquely and two eigenvalue equations are derived with respect to two spatial coordinates, with the aid of which the normal modes and frequencies are solved exactly. It was believed that the exact eigensolutions for cases SSCC, SCCC and CCCC were unable to be obtained, however, they are successfully found in this paper. Comparisons between the present results and the FEM results validate the present exact solutions, which can thus be taken as the benchmark for verifying different approximate approaches.
文摘By virtue of the new technique of performing integration over Dirac's ket-bra operators, we ex- plore quantum optical version of classical optical transformations such as optical Fresnel transform, Hankel transform, fractional Fourier transform, Wigner transform, wavelet transform and Fresnel- Hadmard combinatorial transform etc. In this way one may gain benefit for developing classical optics theory from the research in quantum optics, or vice-versa. We cannot only find some new quantum mechanical unitary operators which correspond to the known optical transformations, de- riving a new theorem for calculating quantum tomogram of density operators, but also can reveal some new classical optical transformations. For examples, we find the generalized Fresnel opera- tor (GFO) to correspond to the generalized Fresnel transform (GFT) in classical optics. We derive GFO's normal product form and its canonical coherent state representation and find that GFO is the loyal representation of symplectic group multiplication rule. We show that GFT is just the transformation matrix element of GFO in the coordinate representation such that two successive GFTs is still a GFT. The ABCD rule of the Gaussian beam propagation is directly demonstrated in the context of quantum optics. Especially, the introduction of quantum mechanical entangled state representations opens up a new area in finding new classical optical transformations. The complex wavelet transform and the condition of mother wavelet are studied in the context of quantum op- tics too. Throughout our discussions, the coherent state, the entangled state representation of the two-mode squeezing operators and the technique of integration within an ordered product (IWOP) of operators are fully used. All these have confirmed Dirac's assertion: "...for a quantum dynamic system that has a classical analogue, unitary transformation in the quantum theory is the analogue of contact transformation in the classical theory".
基金The project supported by the Special Funds for State Key Basic Research Projects under Grant No.G1999,032800
文摘A universal symplectic structure for a Newtonian system including nonconservative cases can be constructed in the framework of Birkhoffian generalization of Hamiltonian mechanics. In this paper the symplectic geometry structure of Birkhoffian system is discussed, then the symplecticity of Birkhoffian phase flow is presented. Based on these properties we give a way to construct symplectic schemes for Birkhoffian systems by using the generating function method.
文摘In the previous papers I and II, we have studied the difference discrete variational principle and the Euler?Lagrange cohomology in the framework of multi-parameter differential approach. We have gotten the difference discrete Euler?Lagrange equations and canonical ones for the difference discrete versions of classical mechanics and field theory as well as the difference discrete versions for the Euler?Lagrange cohomology and applied them to get the necessary and sufficient condition for the symplectic or multisymplectic geometry preserving properties in both the Lagrangian and Hamiltonian formalisms. In this paper, we apply the difference discrete variational principle and Euler?Lagrange cohomological approach directly to the symplectic and multisymplectic algorithms. We will show that either Hamiltonian schemes or Lagrangian ones in both the symplectic and multisymplectic algorithms are variational integrators and their difference discrete symplectic structure-preserving properties can always be established not only in the solution space but also in the function space if and only if the related closed Euler?Lagrange cohomological conditions are satisfied.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 10375039 and 90503008)the Doctoral Program Foundation from the Ministry of Education of China,and the Center of Nuclear Physics of HIRFL of China
文摘Based on the exact analytical solution of ordinary differential equations, a truncation of the Taylor series of the exact solution to the Nth order leads to the Nth order algebraic dynamics algorithm. A detailed numerical comparison is presented with Runge-Kutta algorithm and symplectic geometric algorithm for 12 test models. The results show that the algebraic dynamics algorithm can better preserve both geometrical and dynamical fidelity of a dynamical system at a controllable precision, and it can solve the problem of algorithm-induced dissipation for the Runge-Kutta algorithm and the problem of algorithm-induced phase shift for the symplectic geometric algorithm.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.41174047,40874024&41204041)
文摘Here we introduce generalized momentum and coordinate to transform seismic wave displacement equations into Hamiltonian system.We define the Lie operators associated with kinetic and potential energy,and construct a new kind of second order symplectic scheme,which is extremely suitable for high efficient and long-term seismic wave simulations.Three sets of optimal coefficients are obtained based on the principle of minimum truncation error.We investigate the stability conditions for elastic wave simulation in homogeneous media.These newly developed symplectic schemes are compared with common symplectic schemes to verify the high precision and efficiency in theory and numerical experiments.One of the schemes presented here is compared with the classical Newmark algorithm and third order symplectic scheme to test the long-term computational ability.The scheme gets the same synthetic surface seismic records and single channel record as third order symplectic scheme in the seismic modeling in the heterogeneous model.