Mycorrhizal fungi promote the growth and development of plants, including medicinal plants. The mechanisms by which this growth promotion occurs are of theoretical interest and practical importance to agriculture. Her...Mycorrhizal fungi promote the growth and development of plants, including medicinal plants. The mechanisms by which this growth promotion occurs are of theoretical interest and practical importance to agriculture. Here, an endophytic fungus (AR-18) was isolated from roots of the orchid Anoectochilus roxburghii growing in the wild, and identified as Epulorhiza sp. Tissue-cultured seedlings of A. roxburghii were inoculated with AR-l 8 and co-cultured for 60 d. Endotrophic mycorrhiza formed and the growth of A. roxburghii was markedly promoted by the fungus. To identify genes in A. roxburghii that were differentially expressed during the symbiosis with AR-18, we used the differential display reverse transcription polymerase chain reac- tion (DDRT-PCR) method to compare the transcriptomes between seedlings inoculated with the fungus and control seedlings. We amplified 52 DDRT-PCR bands using 15 primer combinations of three anchor primers and five arbitrary primers, and nine bands were re-amplified by double primers. Reverse Northern blot analyses were used to further screen the bands. Five clones were up-regulated in the symbiotic interaction, including genes encoding a uracil phosphoribosyltransferase (UPRTs; EC 2.4.2.9) and a hypothetical protein. One gene encoding an amino acid transmembrane transporter was down-regulated, and one gene encoding a tRNA-Lys (trnK) and a maturase K (matK) pseudogene were expressed only in the inoculated seedlings. The possible roles of the above genes, especially the UPRTs and marK genes, are discussed in relation to the fungal interaction. This study is the first of its type in A. roxburghii.展开更多
Reactive Oxygen Species (ROS) are continuously produced as a result of aerobic metabolism or in response to biotic and abiotic stresses. ROS are not only toxic by-products of aerobic metabolism, but are also signali...Reactive Oxygen Species (ROS) are continuously produced as a result of aerobic metabolism or in response to biotic and abiotic stresses. ROS are not only toxic by-products of aerobic metabolism, but are also signaling molecules involved in plant growth and environmental adaptation. Antioxidants can protect the cell from oxidative damage by scavenging the ROS. Thus, they play an important role in optimizing cell function by regulating cellular redox state and modifying gene expression. This article aims to review recent studies highlighting the role of redox signals in establishing and maintaining symbiosis between rhizobia and legumes.展开更多
The cosmid gene library of Rhizobium fredii strain B52 genome was constructed,andthen a 3.7kb enhancing fragment was isolated through plant experiment,which could im-prove the symbiotic efficiency of Bradyrhizobium ja...The cosmid gene library of Rhizobium fredii strain B52 genome was constructed,andthen a 3.7kb enhancing fragment was isolated through plant experiment,which could im-prove the symbiotic efficiency of Bradyrhizobium japonicum strain 2210.The obtained higheffective strain was called HN32.It has been widely used as soybean inoculant in He-longjiang,Sichuan and Guangxi provinces with an average of 6%yield increase comparingwith 2210.The recombinant plasmid pHN32 in strain HN32 contains a 3.7kb foreign insert.Its nucleotide sequence was analyzed.Computer analysis indicated that there were two openreading frames(ORFs)within the 3.7kb enhancing fragment.ORF1 shows no homologywith known genes except the first 19 amino acids which had high homology with lactosetransferase of Agrobacterium radiobacter.ORF2 shows 54% homology with hupE of Rhizo-bium leguminosarum,and related with glycosylation transfer gene of Rhizobium meliloti.Names enfA and enfB are proposed to ORF1 and ORF2 respectively.展开更多
To better understand the diversity of metal resistance genetic determinant from microbes that survived at metal tailings in northwest of China, a highly elevated level of heavy metal containing region, genomic analyse...To better understand the diversity of metal resistance genetic determinant from microbes that survived at metal tailings in northwest of China, a highly elevated level of heavy metal containing region, genomic analyses was conducted using genome sequence of three native metal-resistant plant growth promoting bacteria(PGPB). It shows that: Mesorhizobium amorphae CCNWGS0123 contains metal transporters from P-type ATPase, CDF(Cation Diffusion Facilitator), Hup E/Ure J and CHR(chromate ion transporter) family involved in copper, zinc, nickel as well as chromate resistance and homeostasis. Meanwhile, the putative Cop A/Cue O system is expected to mediate copper resistance in Sinorhizobium meliloti CCNWSX0020 while Znt A transporter, assisted with putative Czc D, determines zinc tolerance in Agrobacterium tumefaciens CCNWGS0286. The greenhouse experiment provides the consistent evidence of the plant growth promoting effects of these microbes on their hosts by nitrogen fixation and/or indoleacetic acid(IAA) secretion,indicating a potential in-site phytoremediation usage in the mining tailing regions of China.展开更多
Arbuscular mycorrhizal fungi(AMF) can colonize and form associations with the roots of Amorpha fruticosa L.(desert false indigo). Various genes are induced during the symbiotic process. In this study, de novo transcri...Arbuscular mycorrhizal fungi(AMF) can colonize and form associations with the roots of Amorpha fruticosa L.(desert false indigo). Various genes are induced during the symbiotic process. In this study, de novo transcriptome sequencing using RNA-seq was conducted for the first time for a comprehensive analysis of AMF-A. fruticosa symbionts at the transcript level. We obtained 12 G of raw data from illumina sequencing and recovered 115,786 unigenes with an average length of547 bp, among them 41,848 of significance. A total of2460 diffexpression genes were identified, including 1579 down-regulated and 881 up-regulated genes. A threshold for false discovery rate of \ 0.001 and fold change of [ 1 determined significant differences in gene expression.Using these criteria, we screened 285 significant differentially expressed genes, of which 82 were up-regulated and203 down-regulated. The 82 up-regulated genes were classified according to their functions and assigned into seven categories: stress and defense, metabolism, signaling transduction, protein folding and degradation, energy,protein synthesis, and transcription. The 203 down-regulated genes were screened according to fold change [ 2,and 50 highly significant down-regulated genes were obtained related to stress and defense. The results of this study will provide a useful foundation for further investigation on the metabolic characteristics and molecular mechanisms of AMF associations with leguminous woody shrubs.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 31070300, 31170314 and 31100265)the Chinese Postdoctoral Science Fund (Grant No. 20080440328)+1 种基金the Natural Science Foundation of Chongqing (Grant No. CSTC2008BB5410)the Educational Committee Science & Technology Foundation of Chongqing (Grant No. KJ090504)
文摘Mycorrhizal fungi promote the growth and development of plants, including medicinal plants. The mechanisms by which this growth promotion occurs are of theoretical interest and practical importance to agriculture. Here, an endophytic fungus (AR-18) was isolated from roots of the orchid Anoectochilus roxburghii growing in the wild, and identified as Epulorhiza sp. Tissue-cultured seedlings of A. roxburghii were inoculated with AR-l 8 and co-cultured for 60 d. Endotrophic mycorrhiza formed and the growth of A. roxburghii was markedly promoted by the fungus. To identify genes in A. roxburghii that were differentially expressed during the symbiosis with AR-18, we used the differential display reverse transcription polymerase chain reac- tion (DDRT-PCR) method to compare the transcriptomes between seedlings inoculated with the fungus and control seedlings. We amplified 52 DDRT-PCR bands using 15 primer combinations of three anchor primers and five arbitrary primers, and nine bands were re-amplified by double primers. Reverse Northern blot analyses were used to further screen the bands. Five clones were up-regulated in the symbiotic interaction, including genes encoding a uracil phosphoribosyltransferase (UPRTs; EC 2.4.2.9) and a hypothetical protein. One gene encoding an amino acid transmembrane transporter was down-regulated, and one gene encoding a tRNA-Lys (trnK) and a maturase K (matK) pseudogene were expressed only in the inoculated seedlings. The possible roles of the above genes, especially the UPRTs and marK genes, are discussed in relation to the fungal interaction. This study is the first of its type in A. roxburghii.
文摘Reactive Oxygen Species (ROS) are continuously produced as a result of aerobic metabolism or in response to biotic and abiotic stresses. ROS are not only toxic by-products of aerobic metabolism, but are also signaling molecules involved in plant growth and environmental adaptation. Antioxidants can protect the cell from oxidative damage by scavenging the ROS. Thus, they play an important role in optimizing cell function by regulating cellular redox state and modifying gene expression. This article aims to review recent studies highlighting the role of redox signals in establishing and maintaining symbiosis between rhizobia and legumes.
基金the High Technology Research and Development Programme of china.
文摘The cosmid gene library of Rhizobium fredii strain B52 genome was constructed,andthen a 3.7kb enhancing fragment was isolated through plant experiment,which could im-prove the symbiotic efficiency of Bradyrhizobium japonicum strain 2210.The obtained higheffective strain was called HN32.It has been widely used as soybean inoculant in He-longjiang,Sichuan and Guangxi provinces with an average of 6%yield increase comparingwith 2210.The recombinant plasmid pHN32 in strain HN32 contains a 3.7kb foreign insert.Its nucleotide sequence was analyzed.Computer analysis indicated that there were two openreading frames(ORFs)within the 3.7kb enhancing fragment.ORF1 shows no homologywith known genes except the first 19 amino acids which had high homology with lactosetransferase of Agrobacterium radiobacter.ORF2 shows 54% homology with hupE of Rhizo-bium leguminosarum,and related with glycosylation transfer gene of Rhizobium meliloti.Names enfA and enfB are proposed to ORF1 and ORF2 respectively.
基金supported by the National High Technology Research and Development Program (863) of China (No.2012AA101402)the National Science Foundation of China (Nos.31125007,31370142)
文摘To better understand the diversity of metal resistance genetic determinant from microbes that survived at metal tailings in northwest of China, a highly elevated level of heavy metal containing region, genomic analyses was conducted using genome sequence of three native metal-resistant plant growth promoting bacteria(PGPB). It shows that: Mesorhizobium amorphae CCNWGS0123 contains metal transporters from P-type ATPase, CDF(Cation Diffusion Facilitator), Hup E/Ure J and CHR(chromate ion transporter) family involved in copper, zinc, nickel as well as chromate resistance and homeostasis. Meanwhile, the putative Cop A/Cue O system is expected to mediate copper resistance in Sinorhizobium meliloti CCNWSX0020 while Znt A transporter, assisted with putative Czc D, determines zinc tolerance in Agrobacterium tumefaciens CCNWGS0286. The greenhouse experiment provides the consistent evidence of the plant growth promoting effects of these microbes on their hosts by nitrogen fixation and/or indoleacetic acid(IAA) secretion,indicating a potential in-site phytoremediation usage in the mining tailing regions of China.
基金supported by the National Natural Science Foundation of China(31070576 and 31270535)the Natural Science Foundation of Heilongjiang Province(No.ZD201206)+1 种基金the Excellent Youth Foundation of Heilongjiang Province(No.JC201306)High-level Talents Support Program of Heilongjiang University(Ecological Restoration Team)
文摘Arbuscular mycorrhizal fungi(AMF) can colonize and form associations with the roots of Amorpha fruticosa L.(desert false indigo). Various genes are induced during the symbiotic process. In this study, de novo transcriptome sequencing using RNA-seq was conducted for the first time for a comprehensive analysis of AMF-A. fruticosa symbionts at the transcript level. We obtained 12 G of raw data from illumina sequencing and recovered 115,786 unigenes with an average length of547 bp, among them 41,848 of significance. A total of2460 diffexpression genes were identified, including 1579 down-regulated and 881 up-regulated genes. A threshold for false discovery rate of \ 0.001 and fold change of [ 1 determined significant differences in gene expression.Using these criteria, we screened 285 significant differentially expressed genes, of which 82 were up-regulated and203 down-regulated. The 82 up-regulated genes were classified according to their functions and assigned into seven categories: stress and defense, metabolism, signaling transduction, protein folding and degradation, energy,protein synthesis, and transcription. The 203 down-regulated genes were screened according to fold change [ 2,and 50 highly significant down-regulated genes were obtained related to stress and defense. The results of this study will provide a useful foundation for further investigation on the metabolic characteristics and molecular mechanisms of AMF associations with leguminous woody shrubs.