为提高双有源桥(dual active bridge,DAB)DC-DC变换器的效率,降低其控制复杂度,提出一种基于扩展移相控制的最小电流应力闭环优化控制策略。首先,依据两侧全桥输出电压间的相位关系和桥内移相角的大小,重新定义新的移相比,以确保移相比...为提高双有源桥(dual active bridge,DAB)DC-DC变换器的效率,降低其控制复杂度,提出一种基于扩展移相控制的最小电流应力闭环优化控制策略。首先,依据两侧全桥输出电压间的相位关系和桥内移相角的大小,重新定义新的移相比,以确保移相比与传输功率的正相关性;接着,基于开关管的通断顺序,对DAB的进行工作模态的划分,并择优选出两种作为其实际工作模态;然后,利用Karush-KuhnTucker条件法实现在软开关条件下全功率段的电流应力优化,并与新的移相比相结合设计出一种更为简洁的闭环优化控制策略;最后,搭建DAB仿真模型及实验样机进行验证,结果表明:所提控制策略不但具有控制简单、易实现的特点,同时能在全功率范围内实现最小电流应力控制和开关管的软开关特性。展开更多
Experimental results indicate three regimes for cracking in a ferroelectric double cantilever beam (DCB) under combined electromechanical loading. In the loading, the maximum amplitude of the applied electric field re...Experimental results indicate three regimes for cracking in a ferroelectric double cantilever beam (DCB) under combined electromechanical loading. In the loading, the maximum amplitude of the applied electric field reaches almost twice the coercive field of ferroelectrics. Thus, the model of small scale domain switching is not applicable any more, which is dictated only by the singular term of the crack tip field. In the DCB test, a large or global scale domain switching takes place instead, which is driven jointly by both the singular and non-singular terms of the crack-tip electric field. Combining a full field solution with an energy based switching criterion, we obtain the switching zone by the large scale model around the tip of a stationary impermeable crack. It is observed that the switching zone by the large scale model is significantly different from that by the small scale model. According to the large scale switching zone, the switch-induced stress intensity factor (SIF) and the transverse stress (T-stress) are evaluated numerically. Via the SIF and T-stress induced by the combined loading and corresponding criteria, we address the crack initiation and crack growth stability simultaneously. The two theoretical predictions roughly coincide with the experimental observations.展开更多
Due to the insufficient information regarding the aging phenomenon of cables caused by switching impulses, we aged 15 kV XLPE and EPR cable samples by 10 000 switching impulses in experiments and tested them. Plus in ...Due to the insufficient information regarding the aging phenomenon of cables caused by switching impulses, we aged 15 kV XLPE and EPR cable samples by 10 000 switching impulses in experiments and tested them. Plus in order to compare the aging phenome- non under multi-stress conditions, additional EPR cable samples were aged by rated AC voltage and current with switching impulses superimposed. We used measurements of partial discharge parameters to monitor the cables’ conditions during their aging process, and the AC breakdown voltages measurement to evaluate the cables after aging. Moreover, the Fourier transform infrared (FTIR) spectroscopy measurements revealed the changes of insulation materials after aging. The measurement results confirm that the accelerated aging of cable samples had taken place. The impacts of each individual aging factor are shown through the selected measurements and comparison. The study also helps to assess the reliability of the XLPE and EPR cables under similar condition while serving in power systems.展开更多
DNA damage may compromise genome integrity and lead to cell death. Cells have evolved a variety of processes to respond to DNA damage including damage repair and tolerance mechanisms, as well as damage checkpoints. Th...DNA damage may compromise genome integrity and lead to cell death. Cells have evolved a variety of processes to respond to DNA damage including damage repair and tolerance mechanisms, as well as damage checkpoints. The DNA damage tolerance(DDT) pathway promotes the bypass of single-stranded DNA lesions encountered by DNA polymerases during DNA replication. This prevents the stalling of DNA replication. Two mechanistically distinct DDT branches have been characterized. One is translesion synthesis(TLS) in which a replicative DNA polymerase is temporarily replaced by a specialized TLS polymerase that has the ability to replicate across DNA lesions. TLS is mechanistically simple and straightforward, but it is intrinsically error-prone. The other is the error-free template switching(TS) mechanism in which the stalled nascent strand switches from the damaged template to the undamaged newly synthesized sister strand for extension past the lesion. Error-free TS is a complex but preferable process for bypassing DNA lesions. However, our current understanding of this pathway is sketchy. An increasing number of factors are being found to participate or regulate this important mechanism, which is the focus of this editorial.展开更多
Permanent magnet flux switching machines(PMFSM)have attracted significant research interest and are considered as competent candidates when higher torque density is primary requirement.However,conventional PMFSMs uses...Permanent magnet flux switching machines(PMFSM)have attracted significant research interest and are considered as competent candidates when higher torque density is primary requirement.However,conventional PMFSMs uses excessive rare earth PM volumes which ultimately increases machine the machine weight and PM cost.Moreover,the PMs extended at the stator yoke results in stator leakage flux which degrades the performance.To suppress the leakage flux and diminish the PM volume,the consequent pole PMFSM(CPPMFSM)with flux bridges and barriers encompassing partitioned circumferential and radial magnetized PMs is proposed,thereby ensuring an alternate magnetic path for the working harmonics which improves the modulation effect and flux distribution.Moreover,the influence of the rotor pole number on seven different rotor structures namely,curved rotor,trapezoidal rotor,wide rotor tooth tip,wide rotor base width,rectangular segmented and eccentric rotors are investigated based on the electromagnetic performance and stress distribution.Finite element analysis(FEA)reveals that the 12S-13P CPPMFSM with a wider rotor base offers comparatively better electromagnetic performance.Compare to the conventional PMFSM,the proposed CPPMFSM reduces the PM volume which minimizes the overall machine cost and weight,suppresses the torque ripples by 16.49%,diminishes total harmonic distortion(THD)by 35.24%and decreases cogging torque by 32.88%.Furthermore,the torque and power density are enhanced by 7.028%and 7.025%respectively.展开更多
文摘为提高双有源桥(dual active bridge,DAB)DC-DC变换器的效率,降低其控制复杂度,提出一种基于扩展移相控制的最小电流应力闭环优化控制策略。首先,依据两侧全桥输出电压间的相位关系和桥内移相角的大小,重新定义新的移相比,以确保移相比与传输功率的正相关性;接着,基于开关管的通断顺序,对DAB的进行工作模态的划分,并择优选出两种作为其实际工作模态;然后,利用Karush-KuhnTucker条件法实现在软开关条件下全功率段的电流应力优化,并与新的移相比相结合设计出一种更为简洁的闭环优化控制策略;最后,搭建DAB仿真模型及实验样机进行验证,结果表明:所提控制策略不但具有控制简单、易实现的特点,同时能在全功率范围内实现最小电流应力控制和开关管的软开关特性。
基金supported by the "Sino-German Center for Research Promotion" under a project of "Crack Growth in Ferroelectrics Driven by Cyclic Electric Loading", the National Natural Science Foundation of China (Grant No. 10702071)the China Postdoctoral Science Foundation (Grant No. 201003281)the Shanghai Postdoctoral Scientific Program (Grant No. 10R21415800)
文摘Experimental results indicate three regimes for cracking in a ferroelectric double cantilever beam (DCB) under combined electromechanical loading. In the loading, the maximum amplitude of the applied electric field reaches almost twice the coercive field of ferroelectrics. Thus, the model of small scale domain switching is not applicable any more, which is dictated only by the singular term of the crack tip field. In the DCB test, a large or global scale domain switching takes place instead, which is driven jointly by both the singular and non-singular terms of the crack-tip electric field. Combining a full field solution with an energy based switching criterion, we obtain the switching zone by the large scale model around the tip of a stationary impermeable crack. It is observed that the switching zone by the large scale model is significantly different from that by the small scale model. According to the large scale switching zone, the switch-induced stress intensity factor (SIF) and the transverse stress (T-stress) are evaluated numerically. Via the SIF and T-stress induced by the combined loading and corresponding criteria, we address the crack initiation and crack growth stability simultaneously. The two theoretical predictions roughly coincide with the experimental observations.
基金Electric Ship Research De- velopment and Consortium (ESRDC) for providing financial support for the research work
文摘Due to the insufficient information regarding the aging phenomenon of cables caused by switching impulses, we aged 15 kV XLPE and EPR cable samples by 10 000 switching impulses in experiments and tested them. Plus in order to compare the aging phenome- non under multi-stress conditions, additional EPR cable samples were aged by rated AC voltage and current with switching impulses superimposed. We used measurements of partial discharge parameters to monitor the cables’ conditions during their aging process, and the AC breakdown voltages measurement to evaluate the cables after aging. Moreover, the Fourier transform infrared (FTIR) spectroscopy measurements revealed the changes of insulation materials after aging. The measurement results confirm that the accelerated aging of cable samples had taken place. The impacts of each individual aging factor are shown through the selected measurements and comparison. The study also helps to assess the reliability of the XLPE and EPR cables under similar condition while serving in power systems.
基金Supported by United States National Science Foundation,No.MCB-1158008
文摘DNA damage may compromise genome integrity and lead to cell death. Cells have evolved a variety of processes to respond to DNA damage including damage repair and tolerance mechanisms, as well as damage checkpoints. The DNA damage tolerance(DDT) pathway promotes the bypass of single-stranded DNA lesions encountered by DNA polymerases during DNA replication. This prevents the stalling of DNA replication. Two mechanistically distinct DDT branches have been characterized. One is translesion synthesis(TLS) in which a replicative DNA polymerase is temporarily replaced by a specialized TLS polymerase that has the ability to replicate across DNA lesions. TLS is mechanistically simple and straightforward, but it is intrinsically error-prone. The other is the error-free template switching(TS) mechanism in which the stalled nascent strand switches from the damaged template to the undamaged newly synthesized sister strand for extension past the lesion. Error-free TS is a complex but preferable process for bypassing DNA lesions. However, our current understanding of this pathway is sketchy. An increasing number of factors are being found to participate or regulate this important mechanism, which is the focus of this editorial.
文摘Permanent magnet flux switching machines(PMFSM)have attracted significant research interest and are considered as competent candidates when higher torque density is primary requirement.However,conventional PMFSMs uses excessive rare earth PM volumes which ultimately increases machine the machine weight and PM cost.Moreover,the PMs extended at the stator yoke results in stator leakage flux which degrades the performance.To suppress the leakage flux and diminish the PM volume,the consequent pole PMFSM(CPPMFSM)with flux bridges and barriers encompassing partitioned circumferential and radial magnetized PMs is proposed,thereby ensuring an alternate magnetic path for the working harmonics which improves the modulation effect and flux distribution.Moreover,the influence of the rotor pole number on seven different rotor structures namely,curved rotor,trapezoidal rotor,wide rotor tooth tip,wide rotor base width,rectangular segmented and eccentric rotors are investigated based on the electromagnetic performance and stress distribution.Finite element analysis(FEA)reveals that the 12S-13P CPPMFSM with a wider rotor base offers comparatively better electromagnetic performance.Compare to the conventional PMFSM,the proposed CPPMFSM reduces the PM volume which minimizes the overall machine cost and weight,suppresses the torque ripples by 16.49%,diminishes total harmonic distortion(THD)by 35.24%and decreases cogging torque by 32.88%.Furthermore,the torque and power density are enhanced by 7.028%and 7.025%respectively.