为降低电力调度SCADA系统历史数据量、提高历史数据存储效率,提出一种基于有效估算的旋转门算法(effective reckon swing door trending,ERSDT),并针对压缩的历史数据给出了一种新的数据多级存储策略。ERSDT通过搜寻最远压缩点以及旋转...为降低电力调度SCADA系统历史数据量、提高历史数据存储效率,提出一种基于有效估算的旋转门算法(effective reckon swing door trending,ERSDT),并针对压缩的历史数据给出了一种新的数据多级存储策略。ERSDT通过搜寻最远压缩点以及旋转平衡因子方式进行数据压缩。针对压缩数据给出实时数据库、历史数据库、磁盘文件库三级存储体系,并描述了三级存储体系的运行原理。实验数据验证了ERSDT算法的可行性,与传统的SDT算法相比提高了压缩率、降低了压缩时间。实践证明ERSDT算法以及多级数据存储策略可以降低历史数据量、提高数据存储及查询效率,从而保证SCADA系统安全、稳定的运行。展开更多
针对流程工业实测过程数据压缩存储问题,在深入分析旋转门(SDT,Swing Door Trending)算法的基础上,提出了一种基于SDT算法新的过程数据压缩算法(NSDT,New Swing Door Trending)。NSDT算法采用曲线对过程数据进行拟和以实现数据压缩,与SD...针对流程工业实测过程数据压缩存储问题,在深入分析旋转门(SDT,Swing Door Trending)算法的基础上,提出了一种基于SDT算法新的过程数据压缩算法(NSDT,New Swing Door Trending)。NSDT算法采用曲线对过程数据进行拟和以实现数据压缩,与SDT算法相比能取得更好的压缩效果。根据理论分析和实验数据结果分析,证明了NSDT算法确实可以在不增加压缩误差的前提下,有效地提高压缩比。展开更多
文物监测数据具有结构单一、冗余性大、误差高容忍度的特点,使得无线传感器网络中现有的数据压缩算法在文物监测中显得计算复杂度高、计算能耗大.将轻计算量型的SDT(Swing Door Trending)算法应用到无线传感器网络的文物监测中并作了改...文物监测数据具有结构单一、冗余性大、误差高容忍度的特点,使得无线传感器网络中现有的数据压缩算法在文物监测中显得计算复杂度高、计算能耗大.将轻计算量型的SDT(Swing Door Trending)算法应用到无线传感器网络的文物监测中并作了改进,分析了大规模情况下数据压缩和网络能耗之间的关系,将改进的SDT算法与目前无线传感器网络中有代表性的分布式小波压缩算法进行比较.实验表明,改进的SDT计算能耗较分布式小波压缩算法的能耗少73%,在压缩率小于25%时,改进的SDT压缩算法性能可与分布式小波压缩算法媲美.在长期、大规模的文物监测下,改进的SDT算法更适合于无线传感器网络数据压缩.展开更多
The existing research of the automotive side swing door and the closing angle via tests and simulations. In these tests, the closing energy is mainly conducted by measuring the closing energy door closing velocity and...The existing research of the automotive side swing door and the closing angle via tests and simulations. In these tests, the closing energy is mainly conducted by measuring the closing energy door closing velocity and initial door closing angle are usually not taken into consideration, so the accuracy of the test data cannot be ensured, and, meanwhile, simulations require a great deal of manpower and time. Moreover, frequent tests would give rise to the increasing research and development costs. In this paper, in response to the deficiencies of these current methods, the complicated door closing process is decomposed into the closing processes of different subsystems of door, which includes weather strip seal', air-binding effect, door weight, hinge, check-link and latch. Mathematical models of those subsystems are established according to their working principles during the door closing process. In addition to the theoretical research, an Excel-based software using Visual Basic Application programming language is developed to realize the mathematical models, which aims to calculate the energy consumption of the subsystems. The energy consumption of different subsystems of a production vehicle door is measured to verify the accuracy of the calculation sottware developed. The proposed research provides not only the theoretical basis for the future door closing energy research, but also an interactive method and system, effectively improving the quality and efficiency of vehicle door design.展开更多
文摘为降低电力调度SCADA系统历史数据量、提高历史数据存储效率,提出一种基于有效估算的旋转门算法(effective reckon swing door trending,ERSDT),并针对压缩的历史数据给出了一种新的数据多级存储策略。ERSDT通过搜寻最远压缩点以及旋转平衡因子方式进行数据压缩。针对压缩数据给出实时数据库、历史数据库、磁盘文件库三级存储体系,并描述了三级存储体系的运行原理。实验数据验证了ERSDT算法的可行性,与传统的SDT算法相比提高了压缩率、降低了压缩时间。实践证明ERSDT算法以及多级数据存储策略可以降低历史数据量、提高数据存储及查询效率,从而保证SCADA系统安全、稳定的运行。
文摘针对流程工业实测过程数据压缩存储问题,在深入分析旋转门(SDT,Swing Door Trending)算法的基础上,提出了一种基于SDT算法新的过程数据压缩算法(NSDT,New Swing Door Trending)。NSDT算法采用曲线对过程数据进行拟和以实现数据压缩,与SDT算法相比能取得更好的压缩效果。根据理论分析和实验数据结果分析,证明了NSDT算法确实可以在不增加压缩误差的前提下,有效地提高压缩比。
文摘文物监测数据具有结构单一、冗余性大、误差高容忍度的特点,使得无线传感器网络中现有的数据压缩算法在文物监测中显得计算复杂度高、计算能耗大.将轻计算量型的SDT(Swing Door Trending)算法应用到无线传感器网络的文物监测中并作了改进,分析了大规模情况下数据压缩和网络能耗之间的关系,将改进的SDT算法与目前无线传感器网络中有代表性的分布式小波压缩算法进行比较.实验表明,改进的SDT计算能耗较分布式小波压缩算法的能耗少73%,在压缩率小于25%时,改进的SDT压缩算法性能可与分布式小波压缩算法媲美.在长期、大规模的文物监测下,改进的SDT算法更适合于无线传感器网络数据压缩.
基金supported by Shanghai Automotive Industry Development Foundation of China (Grant No. 0903)R&D Project of Science and Technology Commission of Shanghai Municipality of China (Grant No. 08DZ1150306)
文摘The existing research of the automotive side swing door and the closing angle via tests and simulations. In these tests, the closing energy is mainly conducted by measuring the closing energy door closing velocity and initial door closing angle are usually not taken into consideration, so the accuracy of the test data cannot be ensured, and, meanwhile, simulations require a great deal of manpower and time. Moreover, frequent tests would give rise to the increasing research and development costs. In this paper, in response to the deficiencies of these current methods, the complicated door closing process is decomposed into the closing processes of different subsystems of door, which includes weather strip seal', air-binding effect, door weight, hinge, check-link and latch. Mathematical models of those subsystems are established according to their working principles during the door closing process. In addition to the theoretical research, an Excel-based software using Visual Basic Application programming language is developed to realize the mathematical models, which aims to calculate the energy consumption of the subsystems. The energy consumption of different subsystems of a production vehicle door is measured to verify the accuracy of the calculation sottware developed. The proposed research provides not only the theoretical basis for the future door closing energy research, but also an interactive method and system, effectively improving the quality and efficiency of vehicle door design.