Due to the coexistence and coupling of continuous variables and discrete events, the vehicle height adjustment process of electronic air suspension system can be regarded as a typical hybrid system. Therefore, the hyb...Due to the coexistence and coupling of continuous variables and discrete events, the vehicle height adjustment process of electronic air suspension system can be regarded as a typical hybrid system. Therefore, the hybrid system theory was applied to design a novel vehicle height control strategy in this paper. A nonlinear mechanism model of the vehicle height adjustment system was established based on vehicle system dynamics and thermodynamic theory for variable-mass gas charge/discharge system. In order to model both the continuous/discrete dynamics of vehicle height adjustment process and the on-off statuses switching of solenoid valves, the framework of mixed logical dynamical(MLD) modelling was used. On the basis of the vehicle height adjustment control strategy, the MLD model of the adjustment process was built by introducing auxiliary logical variables and auxiliary continuous variables. Then, the co-simulation of the nonlinear mechanism model and the MLD model was conducted based on the compiling of HYSDEL. The simulation and experimental results show that the proposed control strategy can not only adjust the vehicle height effectively, but also achieve the on-off statuses direct control of solenoid valves.展开更多
The accurate control for the vehicle height and leveling adjustment system of an electronic air suspension(EAS) still is a challenging problem that has not been effectively solved in prior researches. This paper propo...The accurate control for the vehicle height and leveling adjustment system of an electronic air suspension(EAS) still is a challenging problem that has not been effectively solved in prior researches. This paper proposes a new adaptive controller to control the vehicle height and to adjust the roll and pitch angles of the vehicle body(leveling control) during the vehicle height adjustment procedures by an EAS system. A nonlinear mechanism model of the full?car vehicle height adjustment system is established to reflect the system dynamic behaviors and to derive the system optimal control law. To deal with the nonlinear characters in the vehicle height and leveling adjustment processes, the nonlinear system model is globally linearized through the state feedback method. On this basis, a fuzzy sliding mode controller(FSMC) is designed to improve the control accuracy of the vehicle height adjustment and to reduce the peak values of the roll and pitch angles of the vehicle body. To verify the effectiveness of the proposed control method more accurately, the full?car EAS system model programmed using AMESim is also given. Then, the co?simulation study of the FSMC performance can be conducted. Finally, actual vehicle tests are performed with a city bus, and the test results illustrate that the vehicle height adjustment performance is effectively guaranteed by the FSMC, and the peak values of the roll and pitch angles of the vehicle body during the vehicle height adjustment procedures are also reduced significantly. This research proposes an effective control methodology for the vehicle height and leveling adjustment system of an EAS, which provides a favorable control performance for the system.展开更多
Vehicle height and leveling control of electronically controlled air suspension(ECAS) still poses theoretical challenges for researchers that have not been adequately addressed in prior research. This paper investigat...Vehicle height and leveling control of electronically controlled air suspension(ECAS) still poses theoretical challenges for researchers that have not been adequately addressed in prior research. This paper investigates the design and verification of a new controller to adjust the vehicle height and to regulate the roll and pitch angles of the vehicle body(leveling control) during the height adjustment procedures. A nonlinear mechanism model of the vehicle height adjustment system is formulated to describe the dynamic behaviors of the system. By using mixed logical dynamical(MLD) approach, a novel control strategy is proposed to adjust the vehicle height by controlling the on-off statuses of the solenoid valves directly. On this basis, a correction algorithm is also designed to regulate the durations of the on-off statuses of the solenoid valves based on pulse width modulated(PWM) technology, thus the effective leveling control of the vehicle body can be guaranteed. Finally, simulations and vehicle tests results are presented to demonstrate the effectiveness and applicability of the proposed control methodology.展开更多
To reduce the damages of pavement,vehicle components and agricultural product during transportation,an electric control air suspension height adjustment system of agricultural transport vehicle was studied by means of...To reduce the damages of pavement,vehicle components and agricultural product during transportation,an electric control air suspension height adjustment system of agricultural transport vehicle was studied by means of simulation and bench test.For the oscillation phenomenon of vehicle height in driving process,the mathematical model of the vehicle height adjustment system was developed,and the controller of vehicle height based on single neuron adaptive PID control algorithm was designed.The control model was simulated via Matlab/Simulink,and bench test was conducted.Results show that the method is feasible and effective to solve the agricultural vehicle body height unstable phenomenon in the process of switching.Compared with other PID algorithms,the single neuron adaptive PID control in agricultural transport vehicle has shorter response time,faster response speed and more stable switching state.The stability of the designed vehicle height adjustment system and the ride comfort of agricultural transport vehicle were improved.展开更多
For the backfill hydraulic support as the key equipment for achieving integration of backfilling and coal mining simultaneously in the practical process, its characteristics will directly influence the backfill body...For the backfill hydraulic support as the key equipment for achieving integration of backfilling and coal mining simultaneously in the practical process, its characteristics will directly influence the backfill body's compression ratio. Horizontal roof gap, as a key parameter of backfilling characteristics, may impact the backfilling effect from the aspects of control of roof subsidence in advance, support stress, backfilling process and the support design. Firstly, the reason why horizontal roof gap exists was analyzed and its definition, causes and connotation were introduced, then adopting the Pro/E 3D simulation software, three typical 3D entity models of backfill hydraulic supports were built, based on the influence of horizontal roof gap on backfilling effect, and influence rules of four factors, i.e. support height, suspension height, suspension angle and tamping angle, were emphatically analyzed on horizontal roof gap. The results indicate that, the four factors all have significant impacts on horizontal roof gap, but show differences in influence trend and degree, showing negative linear correlation, positive linear correlation, positive semi-parabolic correlation and negative semi-parabolic correlation, respectively. Four legs type is the most adaptive to the four factors, while six legs(II) type has the poorest adaptability, and the horizontal roof gap is small under large support height, small suspension height, small suspension angle and large tamping angle situation. By means of optimizing structure components and their positional relation and suspension height of backfill scrape conveyor in the process of support design and through controlling working face deployment, roof subsidence in advance, mining height and backfilling during engineering application, the horizontal roof gap is optimized. The research results can be served as theoretical basis for support design and guidance for backfill support to have better performance in backfilling.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.51375212 and 51105177)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20133227130001)the China Postdoctoral Science Foundation(Grant No.2014M551518)
文摘Due to the coexistence and coupling of continuous variables and discrete events, the vehicle height adjustment process of electronic air suspension system can be regarded as a typical hybrid system. Therefore, the hybrid system theory was applied to design a novel vehicle height control strategy in this paper. A nonlinear mechanism model of the vehicle height adjustment system was established based on vehicle system dynamics and thermodynamic theory for variable-mass gas charge/discharge system. In order to model both the continuous/discrete dynamics of vehicle height adjustment process and the on-off statuses switching of solenoid valves, the framework of mixed logical dynamical(MLD) modelling was used. On the basis of the vehicle height adjustment control strategy, the MLD model of the adjustment process was built by introducing auxiliary logical variables and auxiliary continuous variables. Then, the co-simulation of the nonlinear mechanism model and the MLD model was conducted based on the compiling of HYSDEL. The simulation and experimental results show that the proposed control strategy can not only adjust the vehicle height effectively, but also achieve the on-off statuses direct control of solenoid valves.
基金Supported by National Natural Science Foundation of China(Grant Nos.51375212,61601203)Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions of China+1 种基金Key Research and Development Program of Jiangsu Province(BE2016149)Jiangsu Provincial Natural Science Foundation of China(BK20140555)
文摘The accurate control for the vehicle height and leveling adjustment system of an electronic air suspension(EAS) still is a challenging problem that has not been effectively solved in prior researches. This paper proposes a new adaptive controller to control the vehicle height and to adjust the roll and pitch angles of the vehicle body(leveling control) during the vehicle height adjustment procedures by an EAS system. A nonlinear mechanism model of the full?car vehicle height adjustment system is established to reflect the system dynamic behaviors and to derive the system optimal control law. To deal with the nonlinear characters in the vehicle height and leveling adjustment processes, the nonlinear system model is globally linearized through the state feedback method. On this basis, a fuzzy sliding mode controller(FSMC) is designed to improve the control accuracy of the vehicle height adjustment and to reduce the peak values of the roll and pitch angles of the vehicle body. To verify the effectiveness of the proposed control method more accurately, the full?car EAS system model programmed using AMESim is also given. Then, the co?simulation study of the FSMC performance can be conducted. Finally, actual vehicle tests are performed with a city bus, and the test results illustrate that the vehicle height adjustment performance is effectively guaranteed by the FSMC, and the peak values of the roll and pitch angles of the vehicle body during the vehicle height adjustment procedures are also reduced significantly. This research proposes an effective control methodology for the vehicle height and leveling adjustment system of an EAS, which provides a favorable control performance for the system.
基金supported by the National Natural Science Foundation of China(Grant Nos.51375212,61403172&51305167)Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)Key Research and Development Program of Jiangsu Province(Grant No.BE2016149)
文摘Vehicle height and leveling control of electronically controlled air suspension(ECAS) still poses theoretical challenges for researchers that have not been adequately addressed in prior research. This paper investigates the design and verification of a new controller to adjust the vehicle height and to regulate the roll and pitch angles of the vehicle body(leveling control) during the height adjustment procedures. A nonlinear mechanism model of the vehicle height adjustment system is formulated to describe the dynamic behaviors of the system. By using mixed logical dynamical(MLD) approach, a novel control strategy is proposed to adjust the vehicle height by controlling the on-off statuses of the solenoid valves directly. On this basis, a correction algorithm is also designed to regulate the durations of the on-off statuses of the solenoid valves based on pulse width modulated(PWM) technology, thus the effective leveling control of the vehicle body can be guaranteed. Finally, simulations and vehicle tests results are presented to demonstrate the effectiveness and applicability of the proposed control methodology.
基金the National Natural Science Foundation of China(Grant No.51375212,71373105)Research Fund for the Doctoral Program of Higher Education of China(Grant No.20133227130001)+1 种基金Research and Innovation Project for College Graduates of Jiangsu Province of China(Grant No.CXZZ12_0663)Jiangsu Provincial Natural Science Foundation of China(Grant No.BK20131255)。
文摘To reduce the damages of pavement,vehicle components and agricultural product during transportation,an electric control air suspension height adjustment system of agricultural transport vehicle was studied by means of simulation and bench test.For the oscillation phenomenon of vehicle height in driving process,the mathematical model of the vehicle height adjustment system was developed,and the controller of vehicle height based on single neuron adaptive PID control algorithm was designed.The control model was simulated via Matlab/Simulink,and bench test was conducted.Results show that the method is feasible and effective to solve the agricultural vehicle body height unstable phenomenon in the process of switching.Compared with other PID algorithms,the single neuron adaptive PID control in agricultural transport vehicle has shorter response time,faster response speed and more stable switching state.The stability of the designed vehicle height adjustment system and the ride comfort of agricultural transport vehicle were improved.
基金Project(2014ZDPY02) supported by the Fundamental Research Funds for the Central Universities,ChinaProject supported by Qinglan Plan of Jiangsu Province,ChinaProject(SKLCRSM12X01) supported by State Key Laboratory of Coal Resources and Safe Mining(China University of Mining & Technology)
文摘For the backfill hydraulic support as the key equipment for achieving integration of backfilling and coal mining simultaneously in the practical process, its characteristics will directly influence the backfill body's compression ratio. Horizontal roof gap, as a key parameter of backfilling characteristics, may impact the backfilling effect from the aspects of control of roof subsidence in advance, support stress, backfilling process and the support design. Firstly, the reason why horizontal roof gap exists was analyzed and its definition, causes and connotation were introduced, then adopting the Pro/E 3D simulation software, three typical 3D entity models of backfill hydraulic supports were built, based on the influence of horizontal roof gap on backfilling effect, and influence rules of four factors, i.e. support height, suspension height, suspension angle and tamping angle, were emphatically analyzed on horizontal roof gap. The results indicate that, the four factors all have significant impacts on horizontal roof gap, but show differences in influence trend and degree, showing negative linear correlation, positive linear correlation, positive semi-parabolic correlation and negative semi-parabolic correlation, respectively. Four legs type is the most adaptive to the four factors, while six legs(II) type has the poorest adaptability, and the horizontal roof gap is small under large support height, small suspension height, small suspension angle and large tamping angle situation. By means of optimizing structure components and their positional relation and suspension height of backfill scrape conveyor in the process of support design and through controlling working face deployment, roof subsidence in advance, mining height and backfilling during engineering application, the horizontal roof gap is optimized. The research results can be served as theoretical basis for support design and guidance for backfill support to have better performance in backfilling.