利用眼睛的状态对驾驶员疲劳进行分析主要有人眼检测和疲劳判断两大问题。驾驶过程中受到光照、角度及眼睛闭合等因素的影响,传统的人眼检测技术误码率较高,而混合复杂的检测技术实时性较差。针对该问题,文章提出一种适用于驾驶员驾驶...利用眼睛的状态对驾驶员疲劳进行分析主要有人眼检测和疲劳判断两大问题。驾驶过程中受到光照、角度及眼睛闭合等因素的影响,传统的人眼检测技术误码率较高,而混合复杂的检测技术实时性较差。针对该问题,文章提出一种适用于驾驶员驾驶过程中的人眼快速定位算法。该方法由粗到细,综合运用基于OpenCV的人脸识别、二值化、改进型灰度积分投影、Susan算子角点提取等技术,并结合PERCLOS(percentage of eyelid closure)方法进行疲劳分析。实验结果表明,该方法对各种驾驶环境下驾驶员眼睛的定位,都能快速地获得较高的精度,疲劳检测正确率较高。展开更多
文摘利用眼睛的状态对驾驶员疲劳进行分析主要有人眼检测和疲劳判断两大问题。驾驶过程中受到光照、角度及眼睛闭合等因素的影响,传统的人眼检测技术误码率较高,而混合复杂的检测技术实时性较差。针对该问题,文章提出一种适用于驾驶员驾驶过程中的人眼快速定位算法。该方法由粗到细,综合运用基于OpenCV的人脸识别、二值化、改进型灰度积分投影、Susan算子角点提取等技术,并结合PERCLOS(percentage of eyelid closure)方法进行疲劳分析。实验结果表明,该方法对各种驾驶环境下驾驶员眼睛的定位,都能快速地获得较高的精度,疲劳检测正确率较高。