A two-dimensional analytical subthreshold behavior model for junctionless dual-material cylindrical surrounding- gate (JLDMCSG) metal-oxide-semiconductor field-effect transistors (MOSFETs) is proposed. It is deriv...A two-dimensional analytical subthreshold behavior model for junctionless dual-material cylindrical surrounding- gate (JLDMCSG) metal-oxide-semiconductor field-effect transistors (MOSFETs) is proposed. It is derived by solving the two-dimensional Poisson's equation in two continuous cylindrical regions with any simplifying assumption. Using this analytical model, the subthreshold characteristics of JLDMCSG MOSFETs are investigated in terms of channel electro- static potential, horizontal electric field, and subthreshold current. Compared to junctionless single-material cylindrical surrounding-gate MOSFETs, JLDMCSG MOSFETs can effectively suppress short-channel effects and simultaneously im- prove carrier transport efficiency. It is found that the subthreshold current of JLDMCSG MOSFETs can be significantly reduced by adopting both a thin oxide and thin silicon channel. The accuracy of the analytical model is verified by its good agreement with the three-dimensional numerical simulator ISE TCAD.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61204092 and 61076101)the Fundamental Research Funds for the Central Universities of Ministry of Education of China(Grant No.K50511250001)
文摘A two-dimensional analytical subthreshold behavior model for junctionless dual-material cylindrical surrounding- gate (JLDMCSG) metal-oxide-semiconductor field-effect transistors (MOSFETs) is proposed. It is derived by solving the two-dimensional Poisson's equation in two continuous cylindrical regions with any simplifying assumption. Using this analytical model, the subthreshold characteristics of JLDMCSG MOSFETs are investigated in terms of channel electro- static potential, horizontal electric field, and subthreshold current. Compared to junctionless single-material cylindrical surrounding-gate MOSFETs, JLDMCSG MOSFETs can effectively suppress short-channel effects and simultaneously im- prove carrier transport efficiency. It is found that the subthreshold current of JLDMCSG MOSFETs can be significantly reduced by adopting both a thin oxide and thin silicon channel. The accuracy of the analytical model is verified by its good agreement with the three-dimensional numerical simulator ISE TCAD.