A strong influence of nitrogen gas on the content of surface hydroxyl groups of TiO2 films by atomic layer deposition(ALD) was investigated by X-ray photoelectron spectroscopy(XPS), contact angle measuring system,...A strong influence of nitrogen gas on the content of surface hydroxyl groups of TiO2 films by atomic layer deposition(ALD) was investigated by X-ray photoelectron spectroscopy(XPS), contact angle measuring system, and UV–Vis spectrophotometer. XPS spectra of O 1s indicate that the content of surface hydroxyl groups is varied when using N2 as carrier gas. The results of water contact angles and optical reflection spectra show that the content variation of surface hydroxyl groups influences the wetting properties and optical reflectivity of TiO2 films. A surface reaction model is suggested to explain the ALD reaction process using N2 as carrier gas.展开更多
Electrocatalytic activity is influenced by the surface charge on the solid catalyst.Conventionally,our attention has been focused on how the surface charge shapes the electric potential and concentration of ionic reac...Electrocatalytic activity is influenced by the surface charge on the solid catalyst.Conventionally,our attention has been focused on how the surface charge shapes the electric potential and concentration of ionic reactant(s)in the local reaction zone.Taking H_(2)O_(2)redox reactions at Pt(111)as a model system,we reveal a peculiar surface charge effect using ab initio molecular dynamics simulations of electrified Pt(111)-water interfaces.In this scenario,the negative surface charge on Pt(111)repels the O-O bond of the reactant(H_(2)O_(2))farther away from the electrode surface.This leads to a higher activation barrier for breaking the O-O bond.Incorporating this microscopic mechanism into a microkinetic-double-layer model,we are able to semi-quantitatively interpret the pH-dependent activity of H_(2)O_(2)redox reactions at Pt(111),especially the anomalously suppressed activity of H_(2)O_(2)reduction with decreasing electrode potential.The relevance of the present surface charge effect is also examined in wider scenarios with different electrolyte cations,solution pHs,crystal facets of the catalyst,and model parameters.In contrast with previous mechanisms focusing on how surface charge influences the local reaction condition at a fixed reaction plane,the present work gives an example in which the location of the reaction plane is adjusted by the surface charge.展开更多
为了考察石墨烯对硝基甲烷(NM)反应机理的影响,采用ONIOM(our Own N-layer Integrated molecular Orbital and molecular Mechanics)方法研究了硝基甲烷在石墨烯表面的三种初始反应,包括NM-亚硝酸甲酯(MN)重排反应、氢迁移重排反应及C—...为了考察石墨烯对硝基甲烷(NM)反应机理的影响,采用ONIOM(our Own N-layer Integrated molecular Orbital and molecular Mechanics)方法研究了硝基甲烷在石墨烯表面的三种初始反应,包括NM-亚硝酸甲酯(MN)重排反应、氢迁移重排反应及C—N键均裂反应。结果表明,石墨烯表面影响了NM初始反应过渡态、反应产物的结构及能量。与孤立NM相比,NM在石墨烯表面的三种初始反应活化能依次降低了13.4 k J·mol-1、增加了3.8 k J·mol-1和5.4 k J·mol-1,活化能的顺序由C—N键均裂反应<氢迁移重排反应<NM-MN重排反应变为NM-MN重排反应<C—N键均裂反应<氢迁移重排反应。由于石墨烯的平面结构,导致反应过渡态与反应产物的结构倾向于形成平面结构或重叠式构型,从而能够最大程度地与石墨烯相互作用。展开更多
基金financially supported by the National Science and Technology Major Project (No. 2009ZX02037-003)the China Postdoctoral Science Foundation (No. 2011M500996)
文摘A strong influence of nitrogen gas on the content of surface hydroxyl groups of TiO2 films by atomic layer deposition(ALD) was investigated by X-ray photoelectron spectroscopy(XPS), contact angle measuring system, and UV–Vis spectrophotometer. XPS spectra of O 1s indicate that the content of surface hydroxyl groups is varied when using N2 as carrier gas. The results of water contact angles and optical reflection spectra show that the content variation of surface hydroxyl groups influences the wetting properties and optical reflectivity of TiO2 films. A surface reaction model is suggested to explain the ALD reaction process using N2 as carrier gas.
文摘Electrocatalytic activity is influenced by the surface charge on the solid catalyst.Conventionally,our attention has been focused on how the surface charge shapes the electric potential and concentration of ionic reactant(s)in the local reaction zone.Taking H_(2)O_(2)redox reactions at Pt(111)as a model system,we reveal a peculiar surface charge effect using ab initio molecular dynamics simulations of electrified Pt(111)-water interfaces.In this scenario,the negative surface charge on Pt(111)repels the O-O bond of the reactant(H_(2)O_(2))farther away from the electrode surface.This leads to a higher activation barrier for breaking the O-O bond.Incorporating this microscopic mechanism into a microkinetic-double-layer model,we are able to semi-quantitatively interpret the pH-dependent activity of H_(2)O_(2)redox reactions at Pt(111),especially the anomalously suppressed activity of H_(2)O_(2)reduction with decreasing electrode potential.The relevance of the present surface charge effect is also examined in wider scenarios with different electrolyte cations,solution pHs,crystal facets of the catalyst,and model parameters.In contrast with previous mechanisms focusing on how surface charge influences the local reaction condition at a fixed reaction plane,the present work gives an example in which the location of the reaction plane is adjusted by the surface charge.
文摘为了考察石墨烯对硝基甲烷(NM)反应机理的影响,采用ONIOM(our Own N-layer Integrated molecular Orbital and molecular Mechanics)方法研究了硝基甲烷在石墨烯表面的三种初始反应,包括NM-亚硝酸甲酯(MN)重排反应、氢迁移重排反应及C—N键均裂反应。结果表明,石墨烯表面影响了NM初始反应过渡态、反应产物的结构及能量。与孤立NM相比,NM在石墨烯表面的三种初始反应活化能依次降低了13.4 k J·mol-1、增加了3.8 k J·mol-1和5.4 k J·mol-1,活化能的顺序由C—N键均裂反应<氢迁移重排反应<NM-MN重排反应变为NM-MN重排反应<C—N键均裂反应<氢迁移重排反应。由于石墨烯的平面结构,导致反应过渡态与反应产物的结构倾向于形成平面结构或重叠式构型,从而能够最大程度地与石墨烯相互作用。