The response of human osteoblast-like osteosarcoma cells (MG63) to surface modification of Ti-6Al-4V implant alloy was investigated by Laser Interference Lithography (LIL). In this work, laser interference lithogr...The response of human osteoblast-like osteosarcoma cells (MG63) to surface modification of Ti-6Al-4V implant alloy was investigated by Laser Interference Lithography (LIL). In this work, laser interference lithography was employed to fabricate the microstructures of grooves, dots and dimples onto the surfaces of Ti-6Al-4V samples. Two and three beam LIL systems were developed to carry out the experiments. The laser treatment resulted in the increases of the roughness and the contact angle of water on the implant alloy surfaces. The proliferation of osteoblasts was analyzed by MTT (3-(4,5-dirnethyl- 2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) assay for the time periods of 4 hours, 2 days, 3 days, and 6 days. The MTT test results demonstrated that the laser treatment surfaces had a positive impact on the proliferation of os- teoblast cells after 24 hours. The alloy surface morphology and the morphological changes of MG63 cells cultured on the laser textured Ti-6Al-4V surface were observed by Scanning Electron Microscope (SEM). The SEM results indicated that the os- teoblast cells were aligned on grooved surfaces and they were prolonged with the structures. Enzymatic detachment results showed that the 20 μm grooved structures provided the better cell adhesion to the textured Ti-6Al-4V surfaces.展开更多
The distribution of residual austenite in the laser hardening laver on the gray cast iron and the change in the amount of residual austenite during sliding wearing have been investigated by X-ray diffractometer.The th...The distribution of residual austenite in the laser hardening laver on the gray cast iron and the change in the amount of residual austenite during sliding wearing have been investigated by X-ray diffractometer.The thin foils of the hardening layer worn down have been observed by electron microscopy.It was revealed that two types of martensite are strain-induced by slid- ing wearing under load of 1.72 MPa on the hardening layer of residual austenite.The strain induced martensite is profitable to improve the sliding wearing resistance.展开更多
The laser melted-resolidified processing on W18Cr4V high speed tool steel has been made us- ing a 1 kW CO_2 continuous wave laser device.The microstructure of the laser melted- resolidified layer has been examined by ...The laser melted-resolidified processing on W18Cr4V high speed tool steel has been made us- ing a 1 kW CO_2 continuous wave laser device.The microstructure of the laser melted- resolidified layer has been examined by optical microscopy and transmission electron microscopy(TEM).It was characteristic of extremely fine dendrite in the laser melted- resolidified layer and δ-ferrite in bulk form in the center of dendrite.The predominant twin martensite and a little dislocation martensite existed in the dendrite.The thin plate-like M_(213)C_6 carbide precipitated coherently on the twin martensites along their twin plane.There were both austenite rich in W,V and Cr and M_6C carbide in the interdendritic regions.展开更多
The properties of bone tissue engineering scaffolds such as architecture, porosity, mechanical properties and surface properties have significant effects on cellular response and play an important role in bone regener...The properties of bone tissue engineering scaffolds such as architecture, porosity, mechanical properties and surface properties have significant effects on cellular response and play an important role in bone regeneration. In this study, threedimensional nanocomposite scaffolds consisting of calcium phosphate (Ca-P) nanoparticles and poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) copolymer with controlled external and internal architectures were successfully produced via selective laser sintering (SLS), one of the versatile rapid prototyping techniques. The Ca-PIPHBV nanocomposite scaffolds had a porosity of (61.75±1.24)%, compressive strength of (2.16±0.21) MPa and Young's modulus of (26.98±2.29) MPa. The surface modification of scaffolds by gelatin was achieved through physical entrapment. The amount of entrapped gelatin could be controlled by varying the solvent composition and reaction time. The surface modification improved the hydrophilicity of scaffolds but did not significantly affect the surface morphology and mechanical properties. Osteoblast-like cells (SaOS-2) were cultured on scaffolds with and without gelatin surface modification. The majority of SaOS-2 cells were viable and proliferated in both types of scaffolds for up to 14 d in culture, as indicated by MTT assay and live and dead assay. Surface modification significantly increased cell proliferation for surface modified scaffolds, which could be due to the improvement in hydrophilicity of the scaffolds.展开更多
Addition of rare earth(RE)such as Y in the surface layer of gray cast iron or Ni-based superalloy by laser sutface melting was carried out using a 2 k W CO_2 laser.For delivering the element Y to the metal surface dur...Addition of rare earth(RE)such as Y in the surface layer of gray cast iron or Ni-based superalloy by laser sutface melting was carried out using a 2 k W CO_2 laser.For delivering the element Y to the metal surface dur- ing laser irradiation,several methods were employed.It is found that Y-containing surface modified layer can he controllably obtained on substrates,a gray cast iron can be laser surface-modified with Cr+Al-Y powder re- sulting in a thin layer of Fe-Cr-Al-Y alloy such as 30Fe40Cr27Al3Y.展开更多
An analytical model describing the physical relations of a UV-based process for halogenation of polymeric surfaces is presented. The process allows, depending on the parameters, a local halogenation with sharp edges a...An analytical model describing the physical relations of a UV-based process for halogenation of polymeric surfaces is presented. The process allows, depending on the parameters, a local halogenation with sharp edges at the interfaces to areas where no halogenation is desired. This is achieved via a nonreactive halogen-containing gaseous precursor and a UV source providing photons which dissociate the precursor photolytically. Thus, only where the UV photons affect the precursor, halogens are generated and the polymer is being halogenated.展开更多
WC powder was injected onto the surface of Q235 steel by laser melt injection (LMI). The influence of process parameters was studied. The microstructure and composition of the coatings were analyzed by SEM, XRD and ED...WC powder was injected onto the surface of Q235 steel by laser melt injection (LMI). The influence of process parameters was studied. The microstructure and composition of the coatings were analyzed by SEM, XRD and EDS. The hardness and wear-resistant property of the coatings and Q235 steel were measured. The results show that LMI layer can be achieved only under the condition that process parameters meet the strict requirements. By optimizing the process parameter, excellent coatings can be acquired by injecting WC powder onto the surface of Q235 steel. The microstructure in the coatings is complex, which consists of WC, W2C and M6C(Fe3W3C-Fe4W2C) phases. The difference of Fe3W3C microstructure in different zones of the coatings is obvious. Both the compositions of the reaction layers around the particle and dendrite precipitation carbides in the upper coating are Fe3W3C. The average hardness of LMI layer is above HV 900, which is about four times that of Q235 steel. The friction coefficient of LMI layer is only one quarter that of the substrate, which indicates that the wear resistance of the coatings is enhanced sharply.展开更多
基金This work was supported by National Key Basic Research Program of China (973 Program No. 2012CB326406), EU FP7 (BioRA), China-EU H2020 (FabSurfWAR Nos. 2016YFE0112100 and 644971), International Science and Technology Cooperation Program of China (No. 2012DFAlI070), National Natural Science Foundation Program of China (Nos. 61176002, 11103047 and 11504030), Jilin Provincial Science and Technology Program (20140414009GH, 20140622009JC, 20140414009GH, 20160520101JH, 20160101318JC and 20160623002TC), and Frontier lnterdiscipline Program of Norman Bethune Health Science Center of Jilin University (No. 2013107025).
文摘The response of human osteoblast-like osteosarcoma cells (MG63) to surface modification of Ti-6Al-4V implant alloy was investigated by Laser Interference Lithography (LIL). In this work, laser interference lithography was employed to fabricate the microstructures of grooves, dots and dimples onto the surfaces of Ti-6Al-4V samples. Two and three beam LIL systems were developed to carry out the experiments. The laser treatment resulted in the increases of the roughness and the contact angle of water on the implant alloy surfaces. The proliferation of osteoblasts was analyzed by MTT (3-(4,5-dirnethyl- 2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) assay for the time periods of 4 hours, 2 days, 3 days, and 6 days. The MTT test results demonstrated that the laser treatment surfaces had a positive impact on the proliferation of os- teoblast cells after 24 hours. The alloy surface morphology and the morphological changes of MG63 cells cultured on the laser textured Ti-6Al-4V surface were observed by Scanning Electron Microscope (SEM). The SEM results indicated that the os- teoblast cells were aligned on grooved surfaces and they were prolonged with the structures. Enzymatic detachment results showed that the 20 μm grooved structures provided the better cell adhesion to the textured Ti-6Al-4V surfaces.
文摘The distribution of residual austenite in the laser hardening laver on the gray cast iron and the change in the amount of residual austenite during sliding wearing have been investigated by X-ray diffractometer.The thin foils of the hardening layer worn down have been observed by electron microscopy.It was revealed that two types of martensite are strain-induced by slid- ing wearing under load of 1.72 MPa on the hardening layer of residual austenite.The strain induced martensite is profitable to improve the sliding wearing resistance.
文摘The laser melted-resolidified processing on W18Cr4V high speed tool steel has been made us- ing a 1 kW CO_2 continuous wave laser device.The microstructure of the laser melted- resolidified layer has been examined by optical microscopy and transmission electron microscopy(TEM).It was characteristic of extremely fine dendrite in the laser melted- resolidified layer and δ-ferrite in bulk form in the center of dendrite.The predominant twin martensite and a little dislocation martensite existed in the dendrite.The thin plate-like M_(213)C_6 carbide precipitated coherently on the twin martensites along their twin plane.There were both austenite rich in W,V and Cr and M_6C carbide in the interdendritic regions.
文摘The properties of bone tissue engineering scaffolds such as architecture, porosity, mechanical properties and surface properties have significant effects on cellular response and play an important role in bone regeneration. In this study, threedimensional nanocomposite scaffolds consisting of calcium phosphate (Ca-P) nanoparticles and poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) copolymer with controlled external and internal architectures were successfully produced via selective laser sintering (SLS), one of the versatile rapid prototyping techniques. The Ca-PIPHBV nanocomposite scaffolds had a porosity of (61.75±1.24)%, compressive strength of (2.16±0.21) MPa and Young's modulus of (26.98±2.29) MPa. The surface modification of scaffolds by gelatin was achieved through physical entrapment. The amount of entrapped gelatin could be controlled by varying the solvent composition and reaction time. The surface modification improved the hydrophilicity of scaffolds but did not significantly affect the surface morphology and mechanical properties. Osteoblast-like cells (SaOS-2) were cultured on scaffolds with and without gelatin surface modification. The majority of SaOS-2 cells were viable and proliferated in both types of scaffolds for up to 14 d in culture, as indicated by MTT assay and live and dead assay. Surface modification significantly increased cell proliferation for surface modified scaffolds, which could be due to the improvement in hydrophilicity of the scaffolds.
基金Project supported by the National Natural Science Foundation of China
文摘Addition of rare earth(RE)such as Y in the surface layer of gray cast iron or Ni-based superalloy by laser sutface melting was carried out using a 2 k W CO_2 laser.For delivering the element Y to the metal surface dur- ing laser irradiation,several methods were employed.It is found that Y-containing surface modified layer can he controllably obtained on substrates,a gray cast iron can be laser surface-modified with Cr+Al-Y powder re- sulting in a thin layer of Fe-Cr-Al-Y alloy such as 30Fe40Cr27Al3Y.
文摘An analytical model describing the physical relations of a UV-based process for halogenation of polymeric surfaces is presented. The process allows, depending on the parameters, a local halogenation with sharp edges at the interfaces to areas where no halogenation is desired. This is achieved via a nonreactive halogen-containing gaseous precursor and a UV source providing photons which dissociate the precursor photolytically. Thus, only where the UV photons affect the precursor, halogens are generated and the polymer is being halogenated.
文摘WC powder was injected onto the surface of Q235 steel by laser melt injection (LMI). The influence of process parameters was studied. The microstructure and composition of the coatings were analyzed by SEM, XRD and EDS. The hardness and wear-resistant property of the coatings and Q235 steel were measured. The results show that LMI layer can be achieved only under the condition that process parameters meet the strict requirements. By optimizing the process parameter, excellent coatings can be acquired by injecting WC powder onto the surface of Q235 steel. The microstructure in the coatings is complex, which consists of WC, W2C and M6C(Fe3W3C-Fe4W2C) phases. The difference of Fe3W3C microstructure in different zones of the coatings is obvious. Both the compositions of the reaction layers around the particle and dendrite precipitation carbides in the upper coating are Fe3W3C. The average hardness of LMI layer is above HV 900, which is about four times that of Q235 steel. The friction coefficient of LMI layer is only one quarter that of the substrate, which indicates that the wear resistance of the coatings is enhanced sharply.