Arc erosion studies are conducted on AgSnO2 contact materials at different stages in the break operation. A resistive load arrangement is used with up to 42 V DC at 24 A and a constant contact opening velocity. The ar...Arc erosion studies are conducted on AgSnO2 contact materials at different stages in the break operation. A resistive load arrangement is used with up to 42 V DC at 24 A and a constant contact opening velocity. The arc current is terminated at different stages as the arc is drawn between the contacts enabling a study of the arcing phenomena up to that point. Surface profiling of the contacts is conducted to determine the extent of erosion at the different stages as the arc is drawn. Spectral analysis is also conducted on the arc and then related to the extent of erosion. The results show that particular features occur at different stages as the arc is drawn. As the arc is initially established, it goes through an "Arc Generation" regime where the arc roots are small and immobile on both the anode and the cathode. Material transfer occurs mainly from anode to cathode. The spectral analysis indicates that Sn and O species dominate the arc followed by the Ag species. As the arc is drawn further and enters the "Arc Degeneration" regime, the anode undergoes significantly larger erosion than the cathode. Also, both contacts indicate that multiple arc roots have formed, which are highly mobile in the later stages of the discharge. The spectral analysis indicates that Ag and N species are in high concentrations compared to other species. The mechanisms of erosion and deposition are discussed in relation to the species within the arc discharge. For the complete break operation, it is found that the anode undergoes major erosion, and it is thought that the gaseous ions species do not dominate the arc under these conditions of short arcs and voltage 〈42 V to cause cathode erosion.展开更多
It is generally considered that four-times ice age happened during the Quaternary epoch on the Tibetan Plateau. However, the research on the chronology of the four-times ice age is far from enough. The Shaluli Mountai...It is generally considered that four-times ice age happened during the Quaternary epoch on the Tibetan Plateau. However, the research on the chronology of the four-times ice age is far from enough. The Shaluli Mountain on the Southeastern Tibetan Plateau is an ideal place for plaeo-glacier study, because there are abundant Quaternary glacial remains there. This paper discusses the ages of the Quaternary glaciations, based on the exposure dating of roche moutonnée, moraines and gla- cial erosion surfaces using in situ cosmogenic isotopes 10Be. It is found that the exposure age of the roche moutonnée at Tuershan is 15 ka, corresponding to Stage 2 of the deep-sea oxygen isotope, suggesting that the roche moutonnée at Tuershan is formed in the last glacial maximum. The expo- sure age of glacial erosion surface at Laolinkou is 130―160 ka, corresponding to Stage 6 of the deep-sea oxygen isotope. The oldest end moraine at Kuzhaori may form at 421―766 kaBP, corre- sponding to Stages 12―18 of the deep-sea oxygen isotope. In accordance with the climate charac- teristic of stages 12,14,16 and 18 reflected by the deep-sea oxygen isotope, polar ice cores and loess sequence, the oldest end moraine at Kuzhaori may form at stage 12 or stage 16, the latter is more possible.展开更多
基金Barnbrook Systems, UK for their support of this work
文摘Arc erosion studies are conducted on AgSnO2 contact materials at different stages in the break operation. A resistive load arrangement is used with up to 42 V DC at 24 A and a constant contact opening velocity. The arc current is terminated at different stages as the arc is drawn between the contacts enabling a study of the arcing phenomena up to that point. Surface profiling of the contacts is conducted to determine the extent of erosion at the different stages as the arc is drawn. Spectral analysis is also conducted on the arc and then related to the extent of erosion. The results show that particular features occur at different stages as the arc is drawn. As the arc is initially established, it goes through an "Arc Generation" regime where the arc roots are small and immobile on both the anode and the cathode. Material transfer occurs mainly from anode to cathode. The spectral analysis indicates that Sn and O species dominate the arc followed by the Ag species. As the arc is drawn further and enters the "Arc Degeneration" regime, the anode undergoes significantly larger erosion than the cathode. Also, both contacts indicate that multiple arc roots have formed, which are highly mobile in the later stages of the discharge. The spectral analysis indicates that Ag and N species are in high concentrations compared to other species. The mechanisms of erosion and deposition are discussed in relation to the species within the arc discharge. For the complete break operation, it is found that the anode undergoes major erosion, and it is thought that the gaseous ions species do not dominate the arc under these conditions of short arcs and voltage 〈42 V to cause cathode erosion.
基金This study was supported by the National Key Basic Research Development Planning Project(Grant No.2003CB415201)the National Natural Science Foundation of China(Grant No.40572097)the Foundation for the Excellent Young Teachers from the National Education Administration(Grant No.2001BC12).
文摘It is generally considered that four-times ice age happened during the Quaternary epoch on the Tibetan Plateau. However, the research on the chronology of the four-times ice age is far from enough. The Shaluli Mountain on the Southeastern Tibetan Plateau is an ideal place for plaeo-glacier study, because there are abundant Quaternary glacial remains there. This paper discusses the ages of the Quaternary glaciations, based on the exposure dating of roche moutonnée, moraines and gla- cial erosion surfaces using in situ cosmogenic isotopes 10Be. It is found that the exposure age of the roche moutonnée at Tuershan is 15 ka, corresponding to Stage 2 of the deep-sea oxygen isotope, suggesting that the roche moutonnée at Tuershan is formed in the last glacial maximum. The expo- sure age of glacial erosion surface at Laolinkou is 130―160 ka, corresponding to Stage 6 of the deep-sea oxygen isotope. The oldest end moraine at Kuzhaori may form at 421―766 kaBP, corre- sponding to Stages 12―18 of the deep-sea oxygen isotope. In accordance with the climate charac- teristic of stages 12,14,16 and 18 reflected by the deep-sea oxygen isotope, polar ice cores and loess sequence, the oldest end moraine at Kuzhaori may form at stage 12 or stage 16, the latter is more possible.