Hydrological modeling,leveraging mathematical formulations to represent the hydrological cycle,is a pivotal tool in representing the spatiotemporal dynamics and distribution patterns inherent in hydrology.These models...Hydrological modeling,leveraging mathematical formulations to represent the hydrological cycle,is a pivotal tool in representing the spatiotemporal dynamics and distribution patterns inherent in hydrology.These models serve a dual purpose:they validate theoretical robustness and applicability via observational data and project future trends,thereby bridging the understanding and prediction of natural processes.In rapid advancements in computational methodologies and the continuous evolution of observational and experimental techniques,the development of numerical hydrological models based on physicallybased surface-subsurface process coupling have accelerated.Anchored in micro-scale conservation principles and physical equations,these models employ numerical techniques to integrate surface and subsurface hydrodynamics,thus replicating the macro-scale hydrological responses of watersheds.Numerical hydrological models have emerged as a leading and predominant trend in hydrological modeling due to their explicit representation of physical processes,heightened by their spatiotemporal resolution and reliance on interdisciplinary integration.This article focuses on the theoretical foundation of surface-subsurface numerical hydrological models.It includes a comparative and analytical discussion of leading numerical hydrological models,encompassing model architecture,numerical solution strategies,spatial representation,and coupling algorithms.Additionally,this paper contrasts these models with traditional hydrological models,thereby delineating the relative merits,drawbacks,and future directions of numerical hydrological modeling.展开更多
This research is concerned with new developments and practical applications of a physically-based numerical model that incorporates new approaches for a finite elements solution to the steady/transient problems of the...This research is concerned with new developments and practical applications of a physically-based numerical model that incorporates new approaches for a finite elements solution to the steady/transient problems of the joint ground/surface water flows. Python scripts are implemented in Geographic Information System (GIS) to store, represent and take decisions on the simulated conditions related to the water resources management at the scale of the watershed. The proposed surface-subsurface model considers surface and groundwater interactions to be 2-D horizontally distributed and depth-averaged through a diffusive wave approach for surface flood routing. Infiltration rates, overland flows and evapotranspiration processes are considered by a diffuse discharge from surface water, non-saturated subsoil and groundwater table. Recent developments also allow for the management of surface water flow control through the capacity of diversion on river beds, spillways and outflow operations of floodgates in weirs and dams of reservoirs. Practical application regards the actual hydrology of the Mero River watershed, with two important water bodies mainly concerned with the water resources management at the Cecebre Reservoir and the present flooding of a deep coal mining excavation. The MELEF model (Modèle d’éLéments Fluides, in French) was adapted and calibrated during a period of five years (2008/ 2012) with the help of hydrological parameters, registered flow rates, water levels and registered precipitation, water uses and water management operations in surface and groundwater bodies. The results predict the likely evolution of the Cecebre Reservoir, the flow rates in rivers, the flooding of the Meirama open pit and the local water balances for different hydrological components.展开更多
This paper presents a physically-based integrated hydrologic model that can simulate the rain-fall-induced 2D surface water flow, 3D variably saturated subsurface flow, upland soil erosion and transport, and contamina...This paper presents a physically-based integrated hydrologic model that can simulate the rain-fall-induced 2D surface water flow, 3D variably saturated subsurface flow, upland soil erosion and transport, and contaminant transport in the surface-subsurface system of a watershed. The model couples surface and subsurface flows based on the assumption of continuity conditions of pressure head and exchange flux at the ground, considering infiltration and evapotranspiration. The upland rill/interrill soil erosion and transport are simulated using a non-equilibrium transport model. Contaminant transport in the integrated surface and subsurface domains is simulated using advection-diffusion equations with mass changes due to sediment sorption and desorption and exchanges between two domains due to infiltration, diffusion, and bed change. The model requires no special treatments at the interface of upland areas and streams and is suitable for wetland areas and agricultural watersheds with shallow streams.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.41930759,42325502)the West Light Foundation of the Chinese Academy of Sciences(Grant No.xbzg-zdsys-202215)+2 种基金the Chinese Academy Sciences Talents Program,National Cryosphere Desert Data Centerthe Qinghai Key Laboratory of Disaster Prevention(Grant No.QFZ-2021-Z02)2023 First Batch of Science and Technology Plan Projects of Lanzhou City(Grant No.2023-1-49)。
文摘Hydrological modeling,leveraging mathematical formulations to represent the hydrological cycle,is a pivotal tool in representing the spatiotemporal dynamics and distribution patterns inherent in hydrology.These models serve a dual purpose:they validate theoretical robustness and applicability via observational data and project future trends,thereby bridging the understanding and prediction of natural processes.In rapid advancements in computational methodologies and the continuous evolution of observational and experimental techniques,the development of numerical hydrological models based on physicallybased surface-subsurface process coupling have accelerated.Anchored in micro-scale conservation principles and physical equations,these models employ numerical techniques to integrate surface and subsurface hydrodynamics,thus replicating the macro-scale hydrological responses of watersheds.Numerical hydrological models have emerged as a leading and predominant trend in hydrological modeling due to their explicit representation of physical processes,heightened by their spatiotemporal resolution and reliance on interdisciplinary integration.This article focuses on the theoretical foundation of surface-subsurface numerical hydrological models.It includes a comparative and analytical discussion of leading numerical hydrological models,encompassing model architecture,numerical solution strategies,spatial representation,and coupling algorithms.Additionally,this paper contrasts these models with traditional hydrological models,thereby delineating the relative merits,drawbacks,and future directions of numerical hydrological modeling.
文摘This research is concerned with new developments and practical applications of a physically-based numerical model that incorporates new approaches for a finite elements solution to the steady/transient problems of the joint ground/surface water flows. Python scripts are implemented in Geographic Information System (GIS) to store, represent and take decisions on the simulated conditions related to the water resources management at the scale of the watershed. The proposed surface-subsurface model considers surface and groundwater interactions to be 2-D horizontally distributed and depth-averaged through a diffusive wave approach for surface flood routing. Infiltration rates, overland flows and evapotranspiration processes are considered by a diffuse discharge from surface water, non-saturated subsoil and groundwater table. Recent developments also allow for the management of surface water flow control through the capacity of diversion on river beds, spillways and outflow operations of floodgates in weirs and dams of reservoirs. Practical application regards the actual hydrology of the Mero River watershed, with two important water bodies mainly concerned with the water resources management at the Cecebre Reservoir and the present flooding of a deep coal mining excavation. The MELEF model (Modèle d’éLéments Fluides, in French) was adapted and calibrated during a period of five years (2008/ 2012) with the help of hydrological parameters, registered flow rates, water levels and registered precipitation, water uses and water management operations in surface and groundwater bodies. The results predict the likely evolution of the Cecebre Reservoir, the flow rates in rivers, the flooding of the Meirama open pit and the local water balances for different hydrological components.
基金Supported by the University of Mississippi and the USDA Agricultural Research Service
文摘This paper presents a physically-based integrated hydrologic model that can simulate the rain-fall-induced 2D surface water flow, 3D variably saturated subsurface flow, upland soil erosion and transport, and contaminant transport in the surface-subsurface system of a watershed. The model couples surface and subsurface flows based on the assumption of continuity conditions of pressure head and exchange flux at the ground, considering infiltration and evapotranspiration. The upland rill/interrill soil erosion and transport are simulated using a non-equilibrium transport model. Contaminant transport in the integrated surface and subsurface domains is simulated using advection-diffusion equations with mass changes due to sediment sorption and desorption and exchanges between two domains due to infiltration, diffusion, and bed change. The model requires no special treatments at the interface of upland areas and streams and is suitable for wetland areas and agricultural watersheds with shallow streams.