为解决点刻式直接零件标志(Direct part mark,DPM)码基本单元分割困难、区域定位欠精确等问题,提出使用超像素分割和谱聚类相结合的算法,对含有DPM区域的图像进行初步分割和精确定位.首先为提高超像素分割的准确、快速和完整性,本文利...为解决点刻式直接零件标志(Direct part mark,DPM)码基本单元分割困难、区域定位欠精确等问题,提出使用超像素分割和谱聚类相结合的算法,对含有DPM区域的图像进行初步分割和精确定位.首先为提高超像素分割的准确、快速和完整性,本文利用近邻传播聚类思想实现自动聚类得到超像素区域,并引入边缘置信度调整超像素边缘,形成自适应边缘简单线性迭代聚类(Adaptive edge simple linear iterative clustering,AE-SLIC)算法.该算法改进了简单线性迭代聚类(Simple linear iterative clustering,SLIC)超像素分割算法存在的未明确界定超像素区域边缘信息和分割数目无法自适应确定等问题;其次,将超像素作为谱聚类中图的顶点进行二次聚类,DPM区域内超像素因相似度高而被聚集为一类,从而完成点刻式DPM区域的精确定位.经实验测试和分析,本文算法得到的超像素分割结果在完整性、运算复杂度等方面优于常见的超像素分割算法.与基于像素点运算的传统定位算法相比,本文算法具有良好的实时性、定位准确率和鲁棒性.展开更多
Superpixel as an important pre-processing technique has been successfully used in many vision applications. In this paper, we proposed a region merging method to improve superpixel segmentation accuracy with low compu...Superpixel as an important pre-processing technique has been successfully used in many vision applications. In this paper, we proposed a region merging method to improve superpixel segmentation accuracy with low computational cost. We first segmented the image into many accurate small regions, and then progressively agglomerated them until the desired region number was reached. The region merging weight was derived from a novel energy function, which encourages the superpixel with color consistency and similar size. Experimental results on the Berkeley BSDS500 data set showed that our region merging method can significantly improve the accuracy of superpixel segmentation. Moreover, the region merging method only need 50ms to process a 481x321 image on a single Intel i3 CPU at 2.5 GHz.展开更多
岩石薄片图像的分析往往依赖于专业人员在显微镜下观察并给出鉴定结果,不但费时费力,并且受设备影响较大。近些年,针对薄片图像的自动识别方法已经被提出。然而,这些方法大多采用监督学习与深度学习相结合的方式,由于需要大量人工标注...岩石薄片图像的分析往往依赖于专业人员在显微镜下观察并给出鉴定结果,不但费时费力,并且受设备影响较大。近些年,针对薄片图像的自动识别方法已经被提出。然而,这些方法大多采用监督学习与深度学习相结合的方式,由于需要大量人工标注而受到限制,为方法的推广与应用带来巨大困难。此外,模型在不同的地层、岩性等目标应用时,由于不同地质环境中岩石的差异性,其泛化性也受到极大限制。本文针对该问题提出了一种简单线性迭代聚类算法(simple linear iterative cluster,SLIC)与半监督自训练结合的方法,仅依靠6%的人工标注便能够实现岩石图像的自动化分割与组分识别,极大地增强岩石图像自动识别方法在实际应用中的价值。该方法首先使用超像素算法SLIC对岩石图像进行预分割,随后基于分割片的颜色特征进行粗合并,并根据最小外接矩形进行切割;切割下来的岩石组分分割图像作为后续处理的基础数据集,这里仅需要人工标注6%的岩石组分数据;随后,这些数据通过一个改进的半监督自训练方法,以改进的VGG16模型作为主模型、ResNet18模型作为评判模型,不断生成高置信度的伪标签,利用迭代优化调整,将其扩展到整个数据集,最终获得一个具有较高的稳定性、准确性及一致性的组分识别模型。实际数据的测试与分析表明,本文所提出SLIC和半监督自训练结合的方法,对6类岩石组分的识别准确率可达到96%。该方法能够在数据差异不大的条件下,帮助用户基本实现自动化的组分识别。而当数据集产生较大差异时,仅需标注小部分样品即可实现自动组分识别。本方法具有较高的泛化性和可靠性,能够在实际应用提供足够的准确性与便利性。展开更多
文摘为解决点刻式直接零件标志(Direct part mark,DPM)码基本单元分割困难、区域定位欠精确等问题,提出使用超像素分割和谱聚类相结合的算法,对含有DPM区域的图像进行初步分割和精确定位.首先为提高超像素分割的准确、快速和完整性,本文利用近邻传播聚类思想实现自动聚类得到超像素区域,并引入边缘置信度调整超像素边缘,形成自适应边缘简单线性迭代聚类(Adaptive edge simple linear iterative clustering,AE-SLIC)算法.该算法改进了简单线性迭代聚类(Simple linear iterative clustering,SLIC)超像素分割算法存在的未明确界定超像素区域边缘信息和分割数目无法自适应确定等问题;其次,将超像素作为谱聚类中图的顶点进行二次聚类,DPM区域内超像素因相似度高而被聚集为一类,从而完成点刻式DPM区域的精确定位.经实验测试和分析,本文算法得到的超像素分割结果在完整性、运算复杂度等方面优于常见的超像素分割算法.与基于像素点运算的传统定位算法相比,本文算法具有良好的实时性、定位准确率和鲁棒性.
文摘Superpixel as an important pre-processing technique has been successfully used in many vision applications. In this paper, we proposed a region merging method to improve superpixel segmentation accuracy with low computational cost. We first segmented the image into many accurate small regions, and then progressively agglomerated them until the desired region number was reached. The region merging weight was derived from a novel energy function, which encourages the superpixel with color consistency and similar size. Experimental results on the Berkeley BSDS500 data set showed that our region merging method can significantly improve the accuracy of superpixel segmentation. Moreover, the region merging method only need 50ms to process a 481x321 image on a single Intel i3 CPU at 2.5 GHz.
文摘岩石薄片图像的分析往往依赖于专业人员在显微镜下观察并给出鉴定结果,不但费时费力,并且受设备影响较大。近些年,针对薄片图像的自动识别方法已经被提出。然而,这些方法大多采用监督学习与深度学习相结合的方式,由于需要大量人工标注而受到限制,为方法的推广与应用带来巨大困难。此外,模型在不同的地层、岩性等目标应用时,由于不同地质环境中岩石的差异性,其泛化性也受到极大限制。本文针对该问题提出了一种简单线性迭代聚类算法(simple linear iterative cluster,SLIC)与半监督自训练结合的方法,仅依靠6%的人工标注便能够实现岩石图像的自动化分割与组分识别,极大地增强岩石图像自动识别方法在实际应用中的价值。该方法首先使用超像素算法SLIC对岩石图像进行预分割,随后基于分割片的颜色特征进行粗合并,并根据最小外接矩形进行切割;切割下来的岩石组分分割图像作为后续处理的基础数据集,这里仅需要人工标注6%的岩石组分数据;随后,这些数据通过一个改进的半监督自训练方法,以改进的VGG16模型作为主模型、ResNet18模型作为评判模型,不断生成高置信度的伪标签,利用迭代优化调整,将其扩展到整个数据集,最终获得一个具有较高的稳定性、准确性及一致性的组分识别模型。实际数据的测试与分析表明,本文所提出SLIC和半监督自训练结合的方法,对6类岩石组分的识别准确率可达到96%。该方法能够在数据差异不大的条件下,帮助用户基本实现自动化的组分识别。而当数据集产生较大差异时,仅需标注小部分样品即可实现自动组分识别。本方法具有较高的泛化性和可靠性,能够在实际应用提供足够的准确性与便利性。