将新近提出的C0有限元后处理中超收敛解答计算的单元能量投影(Element Energy Projection,简称EEP)法推广到一维C1类有限元。根据单元投影定理具体推导了一般梁单元的计算公式,并对两个有代表性的单元给出了数值算例。分析和算例表明,EE...将新近提出的C0有限元后处理中超收敛解答计算的单元能量投影(Element Energy Projection,简称EEP)法推广到一维C1类有限元。根据单元投影定理具体推导了一般梁单元的计算公式,并对两个有代表性的单元给出了数值算例。分析和算例表明,EEP法在一维C1类有限元中再次获得令人满意的效果,即对任一单元中的任一点,从位移一直到三阶导数(如梁的挠度、转角、弯矩、剪力),匀可获得与结点位移精度相当的超收敛结果,而且可精确满足自然边界条件。展开更多
利用单元能量投影(Element Energy Projection,简称EEP)法所计算的EEP超收敛解,在不改变有限元网格及其整体刚度矩阵的情况下,导出残差的等效结点荷载向量,只经回代过程即可得到具有更高阶精度的结点位移的误差估计,使结点位移精度得到...利用单元能量投影(Element Energy Projection,简称EEP)法所计算的EEP超收敛解,在不改变有限元网格及其整体刚度矩阵的情况下,导出残差的等效结点荷载向量,只经回代过程即可得到具有更高阶精度的结点位移的误差估计,使结点位移精度得到极大提高。该文以一般的二阶常微分方程边值和初值问题为例,给出算法和相应的数值算例。从中可以看出,本法十分简单而高效:对于m≥1次单元,采用EEP简约格式和凝聚格式修正后的结点位移,分别具有O(h^(2m+2))和O(h^(3m+mod(m,2)))的超常规的超收敛阶。该文给出了典型算例,并对该法的进一步拓展和应用作了讨论。展开更多
Based on the newly-developed element energy projection (EEP) method for computation of super-convergent results in one-dimensional finite element method (FEM), the task of self-adaptive FEM analysis was converted ...Based on the newly-developed element energy projection (EEP) method for computation of super-convergent results in one-dimensional finite element method (FEM), the task of self-adaptive FEM analysis was converted into the task of adaptive piecewise polynomial interpolation. As a result, a satisfactory FEM mesh can be obtained, and further FEM analysis on this mesh would immediately produce an FEM solution which usually satisfies the user specified error tolerance. Even though the error tolerance was not completely satisfied, one or two steps of further local refinements would be sufficient. This strategy was found to be very simple, rapid, cheap and efficient. Taking the elliptical ordinary differential equation of second order as the model problem, the fundamental idea, implementation strategy and detailed algorithm are described. Representative numerical examples are given to show the effectiveness and reliability of the proposed approach.展开更多
对于自由振动问题,基于单元能量投影(element energy projection, EEP)技术,对频率和模态同时进行误差控制的自适应有限元分析已建立,并被证明可靠且高效。在实际应用中,也存在另一类需求,即只需保证频率的精度,而并不关心模态误差大小...对于自由振动问题,基于单元能量投影(element energy projection, EEP)技术,对频率和模态同时进行误差控制的自适应有限元分析已建立,并被证明可靠且高效。在实际应用中,也存在另一类需求,即只需保证频率的精度,而并不关心模态误差大小。该研究提出了频率超收敛计算方案,继而建立了整体频率误差和局部模态误差的转换关系,从而在整体上以频率误差估计控制算法停机,在局部上以模态误差估计驱动网格更新,最终建立了以频率误差控制为目标的自由振动问题自适应有限元分析策略。该方法的有效性在二阶Sturm-Liouville问题及弹性薄膜自由振动问题上得到了应用验证。展开更多
The element energy projection (EEP) method for computation of super- convergent resulting in a one-dimensional finite element method (FEM) is successfully used to self-adaptive FEM analysis of various linear probl...The element energy projection (EEP) method for computation of super- convergent resulting in a one-dimensional finite element method (FEM) is successfully used to self-adaptive FEM analysis of various linear problems, based on which this paper presents a substantial extension of the whole set of technology to nonlinear problems. The main idea behind the technology transfer from linear analysis to nonlinear analysis is to use Newton's method to linearize nonlinear problems into a series of linear problems so that the EEP formulation and the corresponding adaptive strategy can be directly used without the need for specific super-convergence formulation for nonlinear FEM. As a re- sult, a unified and general self-adaptive algorithm for nonlinear FEM analysis is formed. The proposed algorithm is found to be able to produce satisfactory finite element results with accuracy satisfying the user-preset error tolerances by maximum norm anywhere on the mesh. Taking the nonlinear ordinary differential equation (ODE) of second-order as the model problem, this paper describes the related fundamental idea, the imple- mentation strategy, and the computational algorithm. Representative numerical exam- ples are given to show the efficiency, stability, versatility, and reliability of the proposed approach.展开更多
Based on the newly-developed element energy projection (EEP) method with optimal super-convergence order for computation of super-convergent results, an improved self-adaptive strategy for one-dimensional finite ele...Based on the newly-developed element energy projection (EEP) method with optimal super-convergence order for computation of super-convergent results, an improved self-adaptive strategy for one-dimensional finite element method (FEM) is proposed. In the strategy, a posteriori errors are estimated by comparing FEM solutions to EEP super-convergent solutions with optimal order of super-convergence, meshes are refined by using the error-averaging method. Quasi-FEM solutions are used to replace the true FEM solutions in the adaptive process. This strategy has been found to be simple, clear, efficient and reliable. For most problems, only one adaptive step is needed to produce the required FEM solutions which pointwise satisfy the user specified error tolerances in the max-norm. Taking the elliptical ordinary differential equation of the second order as the model problem, this paper describes the fundamental idea, implementation strategy and computational algorithm and representative numerical examples are given to show the effectiveness and reliability of the proposed approach.展开更多
文摘将新近提出的C0有限元后处理中超收敛解答计算的单元能量投影(Element Energy Projection,简称EEP)法推广到一维C1类有限元。根据单元投影定理具体推导了一般梁单元的计算公式,并对两个有代表性的单元给出了数值算例。分析和算例表明,EEP法在一维C1类有限元中再次获得令人满意的效果,即对任一单元中的任一点,从位移一直到三阶导数(如梁的挠度、转角、弯矩、剪力),匀可获得与结点位移精度相当的超收敛结果,而且可精确满足自然边界条件。
文摘利用单元能量投影(Element Energy Projection,简称EEP)法所计算的EEP超收敛解,在不改变有限元网格及其整体刚度矩阵的情况下,导出残差的等效结点荷载向量,只经回代过程即可得到具有更高阶精度的结点位移的误差估计,使结点位移精度得到极大提高。该文以一般的二阶常微分方程边值和初值问题为例,给出算法和相应的数值算例。从中可以看出,本法十分简单而高效:对于m≥1次单元,采用EEP简约格式和凝聚格式修正后的结点位移,分别具有O(h^(2m+2))和O(h^(3m+mod(m,2)))的超常规的超收敛阶。该文给出了典型算例,并对该法的进一步拓展和应用作了讨论。
基金Project supported by the National Natural Science Foundation of China (No.50278046)
文摘Based on the newly-developed element energy projection (EEP) method for computation of super-convergent results in one-dimensional finite element method (FEM), the task of self-adaptive FEM analysis was converted into the task of adaptive piecewise polynomial interpolation. As a result, a satisfactory FEM mesh can be obtained, and further FEM analysis on this mesh would immediately produce an FEM solution which usually satisfies the user specified error tolerance. Even though the error tolerance was not completely satisfied, one or two steps of further local refinements would be sufficient. This strategy was found to be very simple, rapid, cheap and efficient. Taking the elliptical ordinary differential equation of second order as the model problem, the fundamental idea, implementation strategy and detailed algorithm are described. Representative numerical examples are given to show the effectiveness and reliability of the proposed approach.
文摘对于自由振动问题,基于单元能量投影(element energy projection, EEP)技术,对频率和模态同时进行误差控制的自适应有限元分析已建立,并被证明可靠且高效。在实际应用中,也存在另一类需求,即只需保证频率的精度,而并不关心模态误差大小。该研究提出了频率超收敛计算方案,继而建立了整体频率误差和局部模态误差的转换关系,从而在整体上以频率误差估计控制算法停机,在局部上以模态误差估计驱动网格更新,最终建立了以频率误差控制为目标的自由振动问题自适应有限元分析策略。该方法的有效性在二阶Sturm-Liouville问题及弹性薄膜自由振动问题上得到了应用验证。
基金supported by the National Natural Science Foundation of China(Nos.51378293,51078199,50678093,and 50278046)the Program for Changjiang Scholars and the Innovative Research Team in University of China(No.IRT00736)
文摘The element energy projection (EEP) method for computation of super- convergent resulting in a one-dimensional finite element method (FEM) is successfully used to self-adaptive FEM analysis of various linear problems, based on which this paper presents a substantial extension of the whole set of technology to nonlinear problems. The main idea behind the technology transfer from linear analysis to nonlinear analysis is to use Newton's method to linearize nonlinear problems into a series of linear problems so that the EEP formulation and the corresponding adaptive strategy can be directly used without the need for specific super-convergence formulation for nonlinear FEM. As a re- sult, a unified and general self-adaptive algorithm for nonlinear FEM analysis is formed. The proposed algorithm is found to be able to produce satisfactory finite element results with accuracy satisfying the user-preset error tolerances by maximum norm anywhere on the mesh. Taking the nonlinear ordinary differential equation (ODE) of second-order as the model problem, this paper describes the related fundamental idea, the imple- mentation strategy, and the computational algorithm. Representative numerical exam- ples are given to show the efficiency, stability, versatility, and reliability of the proposed approach.
基金the National Natural Science Foundation of China(No.50678093)Program for Changjiang Scholars and Innovative Research Team in University(No.IRT00736)
文摘Based on the newly-developed element energy projection (EEP) method with optimal super-convergence order for computation of super-convergent results, an improved self-adaptive strategy for one-dimensional finite element method (FEM) is proposed. In the strategy, a posteriori errors are estimated by comparing FEM solutions to EEP super-convergent solutions with optimal order of super-convergence, meshes are refined by using the error-averaging method. Quasi-FEM solutions are used to replace the true FEM solutions in the adaptive process. This strategy has been found to be simple, clear, efficient and reliable. For most problems, only one adaptive step is needed to produce the required FEM solutions which pointwise satisfy the user specified error tolerances in the max-norm. Taking the elliptical ordinary differential equation of the second order as the model problem, this paper describes the fundamental idea, implementation strategy and computational algorithm and representative numerical examples are given to show the effectiveness and reliability of the proposed approach.